71 lines
2.0 KiB
Python
71 lines
2.0 KiB
Python
from numbers import Number
|
|
|
|
import torch
|
|
from torch.distributions import constraints
|
|
from torch.distributions.exp_family import ExponentialFamily
|
|
from torch.distributions.utils import broadcast_all
|
|
|
|
|
|
class Poisson(ExponentialFamily):
|
|
r"""
|
|
Creates a Poisson distribution parameterized by :attr:`rate`, the rate parameter.
|
|
|
|
Samples are nonnegative integers, with a pmf given by
|
|
|
|
.. math::
|
|
\mathrm{rate}^k \frac{e^{-\mathrm{rate}}}{k!}
|
|
|
|
Example::
|
|
|
|
>>> m = Poisson(torch.tensor([4]))
|
|
>>> m.sample()
|
|
tensor([ 3.])
|
|
|
|
Args:
|
|
rate (Number, Tensor): the rate parameter
|
|
"""
|
|
arg_constraints = {'rate': constraints.positive}
|
|
support = constraints.nonnegative_integer
|
|
|
|
@property
|
|
def mean(self):
|
|
return self.rate
|
|
|
|
@property
|
|
def variance(self):
|
|
return self.rate
|
|
|
|
def __init__(self, rate, validate_args=None):
|
|
self.rate, = broadcast_all(rate)
|
|
if isinstance(rate, Number):
|
|
batch_shape = torch.Size()
|
|
else:
|
|
batch_shape = self.rate.size()
|
|
super(Poisson, self).__init__(batch_shape, validate_args=validate_args)
|
|
|
|
def expand(self, batch_shape, _instance=None):
|
|
new = self._get_checked_instance(Poisson, _instance)
|
|
batch_shape = torch.Size(batch_shape)
|
|
new.rate = self.rate.expand(batch_shape)
|
|
super(Poisson, new).__init__(batch_shape, validate_args=False)
|
|
new._validate_args = self._validate_args
|
|
return new
|
|
|
|
def sample(self, sample_shape=torch.Size()):
|
|
shape = self._extended_shape(sample_shape)
|
|
with torch.no_grad():
|
|
return torch.poisson(self.rate.expand(shape))
|
|
|
|
def log_prob(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
rate, value = broadcast_all(self.rate, value)
|
|
return (rate.log() * value) - rate - (value + 1).lgamma()
|
|
|
|
@property
|
|
def _natural_params(self):
|
|
return (torch.log(self.rate), )
|
|
|
|
def _log_normalizer(self, x):
|
|
return torch.exp(x)
|