311 lines
12 KiB
Python
311 lines
12 KiB
Python
import re
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint as cp
|
|
from collections import OrderedDict
|
|
from .utils import load_state_dict_from_url
|
|
from torch import Tensor
|
|
from typing import Any, List, Tuple
|
|
|
|
|
|
__all__ = ['DenseNet', 'densenet121', 'densenet169', 'densenet201', 'densenet161']
|
|
|
|
model_urls = {
|
|
'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth',
|
|
'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth',
|
|
'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth',
|
|
'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth',
|
|
}
|
|
|
|
|
|
class _DenseLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
num_input_features: int,
|
|
growth_rate: int,
|
|
bn_size: int,
|
|
drop_rate: float,
|
|
memory_efficient: bool = False
|
|
) -> None:
|
|
super(_DenseLayer, self).__init__()
|
|
self.norm1: nn.BatchNorm2d
|
|
self.add_module('norm1', nn.BatchNorm2d(num_input_features))
|
|
self.relu1: nn.ReLU
|
|
self.add_module('relu1', nn.ReLU(inplace=True))
|
|
self.conv1: nn.Conv2d
|
|
self.add_module('conv1', nn.Conv2d(num_input_features, bn_size *
|
|
growth_rate, kernel_size=1, stride=1,
|
|
bias=False))
|
|
self.norm2: nn.BatchNorm2d
|
|
self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate))
|
|
self.relu2: nn.ReLU
|
|
self.add_module('relu2', nn.ReLU(inplace=True))
|
|
self.conv2: nn.Conv2d
|
|
self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate,
|
|
kernel_size=3, stride=1, padding=1,
|
|
bias=False))
|
|
self.drop_rate = float(drop_rate)
|
|
self.memory_efficient = memory_efficient
|
|
|
|
def bn_function(self, inputs: List[Tensor]) -> Tensor:
|
|
concated_features = torch.cat(inputs, 1)
|
|
bottleneck_output = self.conv1(self.relu1(self.norm1(concated_features))) # noqa: T484
|
|
return bottleneck_output
|
|
|
|
# todo: rewrite when torchscript supports any
|
|
def any_requires_grad(self, input: List[Tensor]) -> bool:
|
|
for tensor in input:
|
|
if tensor.requires_grad:
|
|
return True
|
|
return False
|
|
|
|
@torch.jit.unused # noqa: T484
|
|
def call_checkpoint_bottleneck(self, input: List[Tensor]) -> Tensor:
|
|
def closure(*inputs):
|
|
return self.bn_function(inputs)
|
|
|
|
return cp.checkpoint(closure, *input)
|
|
|
|
@torch.jit._overload_method # noqa: F811
|
|
def forward(self, input: List[Tensor]) -> Tensor:
|
|
pass
|
|
|
|
@torch.jit._overload_method # noqa: F811
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
pass
|
|
|
|
# torchscript does not yet support *args, so we overload method
|
|
# allowing it to take either a List[Tensor] or single Tensor
|
|
def forward(self, input: Tensor) -> Tensor: # noqa: F811
|
|
if isinstance(input, Tensor):
|
|
prev_features = [input]
|
|
else:
|
|
prev_features = input
|
|
|
|
if self.memory_efficient and self.any_requires_grad(prev_features):
|
|
if torch.jit.is_scripting():
|
|
raise Exception("Memory Efficient not supported in JIT")
|
|
|
|
bottleneck_output = self.call_checkpoint_bottleneck(prev_features)
|
|
else:
|
|
bottleneck_output = self.bn_function(prev_features)
|
|
|
|
new_features = self.conv2(self.relu2(self.norm2(bottleneck_output)))
|
|
if self.drop_rate > 0:
|
|
new_features = F.dropout(new_features, p=self.drop_rate,
|
|
training=self.training)
|
|
return new_features
|
|
|
|
|
|
class _DenseBlock(nn.ModuleDict):
|
|
_version = 2
|
|
|
|
def __init__(
|
|
self,
|
|
num_layers: int,
|
|
num_input_features: int,
|
|
bn_size: int,
|
|
growth_rate: int,
|
|
drop_rate: float,
|
|
memory_efficient: bool = False
|
|
) -> None:
|
|
super(_DenseBlock, self).__init__()
|
|
for i in range(num_layers):
|
|
layer = _DenseLayer(
|
|
num_input_features + i * growth_rate,
|
|
growth_rate=growth_rate,
|
|
bn_size=bn_size,
|
|
drop_rate=drop_rate,
|
|
memory_efficient=memory_efficient,
|
|
)
|
|
self.add_module('denselayer%d' % (i + 1), layer)
|
|
|
|
def forward(self, init_features: Tensor) -> Tensor:
|
|
features = [init_features]
|
|
for name, layer in self.items():
|
|
new_features = layer(features)
|
|
features.append(new_features)
|
|
return torch.cat(features, 1)
|
|
|
|
|
|
class _Transition(nn.Sequential):
|
|
def __init__(self, num_input_features: int, num_output_features: int) -> None:
|
|
super(_Transition, self).__init__()
|
|
self.add_module('norm', nn.BatchNorm2d(num_input_features))
|
|
self.add_module('relu', nn.ReLU(inplace=True))
|
|
self.add_module('conv', nn.Conv2d(num_input_features, num_output_features,
|
|
kernel_size=1, stride=1, bias=False))
|
|
self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))
|
|
|
|
|
|
class DenseNet(nn.Module):
|
|
r"""Densenet-BC model class, based on
|
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_.
|
|
|
|
Args:
|
|
growth_rate (int) - how many filters to add each layer (`k` in paper)
|
|
block_config (list of 4 ints) - how many layers in each pooling block
|
|
num_init_features (int) - the number of filters to learn in the first convolution layer
|
|
bn_size (int) - multiplicative factor for number of bottle neck layers
|
|
(i.e. bn_size * k features in the bottleneck layer)
|
|
drop_rate (float) - dropout rate after each dense layer
|
|
num_classes (int) - number of classification classes
|
|
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
|
|
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
growth_rate: int = 32,
|
|
block_config: Tuple[int, int, int, int] = (6, 12, 24, 16),
|
|
num_init_features: int = 64,
|
|
bn_size: int = 4,
|
|
drop_rate: float = 0,
|
|
num_classes: int = 1000,
|
|
memory_efficient: bool = False
|
|
) -> None:
|
|
|
|
super(DenseNet, self).__init__()
|
|
|
|
# First convolution
|
|
self.features = nn.Sequential(OrderedDict([
|
|
('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2,
|
|
padding=3, bias=False)),
|
|
('norm0', nn.BatchNorm2d(num_init_features)),
|
|
('relu0', nn.ReLU(inplace=True)),
|
|
('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
|
|
]))
|
|
|
|
# Each denseblock
|
|
num_features = num_init_features
|
|
for i, num_layers in enumerate(block_config):
|
|
block = _DenseBlock(
|
|
num_layers=num_layers,
|
|
num_input_features=num_features,
|
|
bn_size=bn_size,
|
|
growth_rate=growth_rate,
|
|
drop_rate=drop_rate,
|
|
memory_efficient=memory_efficient
|
|
)
|
|
self.features.add_module('denseblock%d' % (i + 1), block)
|
|
num_features = num_features + num_layers * growth_rate
|
|
if i != len(block_config) - 1:
|
|
trans = _Transition(num_input_features=num_features,
|
|
num_output_features=num_features // 2)
|
|
self.features.add_module('transition%d' % (i + 1), trans)
|
|
num_features = num_features // 2
|
|
|
|
# Final batch norm
|
|
self.features.add_module('norm5', nn.BatchNorm2d(num_features))
|
|
|
|
# Linear layer
|
|
self.classifier = nn.Linear(num_features, num_classes)
|
|
|
|
# Official init from torch repo.
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight)
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.Linear):
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
features = self.features(x)
|
|
out = F.relu(features, inplace=True)
|
|
out = F.adaptive_avg_pool2d(out, (1, 1))
|
|
out = torch.flatten(out, 1)
|
|
out = self.classifier(out)
|
|
return out
|
|
|
|
|
|
def _load_state_dict(model: nn.Module, model_url: str, progress: bool) -> None:
|
|
# '.'s are no longer allowed in module names, but previous _DenseLayer
|
|
# has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
|
|
# They are also in the checkpoints in model_urls. This pattern is used
|
|
# to find such keys.
|
|
pattern = re.compile(
|
|
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
|
|
|
|
state_dict = load_state_dict_from_url(model_url, progress=progress)
|
|
for key in list(state_dict.keys()):
|
|
res = pattern.match(key)
|
|
if res:
|
|
new_key = res.group(1) + res.group(2)
|
|
state_dict[new_key] = state_dict[key]
|
|
del state_dict[key]
|
|
model.load_state_dict(state_dict)
|
|
|
|
|
|
def _densenet(
|
|
arch: str,
|
|
growth_rate: int,
|
|
block_config: Tuple[int, int, int, int],
|
|
num_init_features: int,
|
|
pretrained: bool,
|
|
progress: bool,
|
|
**kwargs: Any
|
|
) -> DenseNet:
|
|
model = DenseNet(growth_rate, block_config, num_init_features, **kwargs)
|
|
if pretrained:
|
|
_load_state_dict(model, model_urls[arch], progress)
|
|
return model
|
|
|
|
|
|
def densenet121(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> DenseNet:
|
|
r"""Densenet-121 model from
|
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_.
|
|
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
progress (bool): If True, displays a progress bar of the download to stderr
|
|
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
|
|
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_.
|
|
"""
|
|
return _densenet('densenet121', 32, (6, 12, 24, 16), 64, pretrained, progress,
|
|
**kwargs)
|
|
|
|
|
|
def densenet161(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> DenseNet:
|
|
r"""Densenet-161 model from
|
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_.
|
|
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
progress (bool): If True, displays a progress bar of the download to stderr
|
|
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
|
|
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_.
|
|
"""
|
|
return _densenet('densenet161', 48, (6, 12, 36, 24), 96, pretrained, progress,
|
|
**kwargs)
|
|
|
|
|
|
def densenet169(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> DenseNet:
|
|
r"""Densenet-169 model from
|
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_.
|
|
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
progress (bool): If True, displays a progress bar of the download to stderr
|
|
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
|
|
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_.
|
|
"""
|
|
return _densenet('densenet169', 32, (6, 12, 32, 32), 64, pretrained, progress,
|
|
**kwargs)
|
|
|
|
|
|
def densenet201(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> DenseNet:
|
|
r"""Densenet-201 model from
|
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_.
|
|
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
progress (bool): If True, displays a progress bar of the download to stderr
|
|
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
|
|
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_.
|
|
"""
|
|
return _densenet('densenet201', 32, (6, 12, 48, 32), 64, pretrained, progress,
|
|
**kwargs)
|