45 lines
1.3 KiB
Plaintext
45 lines
1.3 KiB
Plaintext
#!c:\users\kratu\pycharmprojects\projekt_ai-automatyczny_saper\venv\scripts\python.exe
|
|
|
|
import random
|
|
import argparse
|
|
from mnist import MNIST
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--id", default=None, type=int,
|
|
help="ID (position) of the letter to show")
|
|
parser.add_argument("--training", action="store_true",
|
|
help="Use training set instead of testing set")
|
|
parser.add_argument("--dataset", default="digits",
|
|
help="EMNIST dataset to load")
|
|
parser.add_argument("--data", default="./emnist_data",
|
|
help="Path to MNIST data dir")
|
|
|
|
args = parser.parse_args()
|
|
|
|
mn = MNIST(args.data)
|
|
mn.select_emnist(args.dataset)
|
|
|
|
if args.training:
|
|
img, label = mn.load_training()
|
|
else:
|
|
img, label = mn.load_testing()
|
|
|
|
if args.id:
|
|
which = args.id
|
|
else:
|
|
which = random.randrange(0, len(label))
|
|
|
|
print('Showing id {}, num: {}'.format(which, label[which]))
|
|
|
|
# letters dataset uses A=1 B=2 ...
|
|
if args.dataset == 'letters':
|
|
print('Letter "{}"'.format(chr(label[which] + ord('a') - 1)))
|
|
|
|
print(mn.display(img[which]))
|
|
wat = img[which]
|
|
#import IPython
|
|
#IPython.embed()
|