79 lines
2.7 KiB
Python
79 lines
2.7 KiB
Python
|
import os
|
||
|
|
||
|
import torch
|
||
|
from torch import nn, optim
|
||
|
import torch.nn.functional as functional
|
||
|
|
||
|
|
||
|
class LinearQNetwork(nn.Module):
|
||
|
def __init__(self, input_size, hidden_size, output_size, pretrained=False):
|
||
|
super().__init__()
|
||
|
self.linear_one = nn.Linear(input_size, hidden_size)
|
||
|
self.linear_two = nn.Linear(hidden_size, output_size)
|
||
|
self.pretrained = pretrained
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = functional.relu(self.linear_one(x))
|
||
|
x = self.linear_two(x)
|
||
|
|
||
|
return x
|
||
|
|
||
|
def save(self, file_name='model.pth'):
|
||
|
model_directory = 'model'
|
||
|
if not os.path.exists(model_directory):
|
||
|
os.makedirs(model_directory)
|
||
|
|
||
|
file_path = os.path.join(model_directory, file_name)
|
||
|
torch.save(self.state_dict(), file_path)
|
||
|
|
||
|
@staticmethod
|
||
|
def load(input_size, hidden_size, output_size, file_name='model.pth'):
|
||
|
model_directory = 'model'
|
||
|
file_path = os.path.join(model_directory, file_name)
|
||
|
if os.path.isfile(file_path):
|
||
|
model = LinearQNetwork(input_size, hidden_size, output_size, True)
|
||
|
model.load_state_dict(torch.load(file_path))
|
||
|
model.eval()
|
||
|
return model
|
||
|
return LinearQNetwork(11, 256, 3)
|
||
|
|
||
|
|
||
|
class QTrainer:
|
||
|
def __init__(self, model, lr, gamma):
|
||
|
self.model = model
|
||
|
self.lr = lr
|
||
|
self.gamma = gamma
|
||
|
self.optimizer = optim.Adam(model.parameters(), lr=self.lr)
|
||
|
self.criterion = nn.MSELoss() # Mean squared error
|
||
|
|
||
|
def train_step(self, state, action, reward, next_state, done):
|
||
|
state = torch.tensor(state, dtype=torch.float)
|
||
|
next_state = torch.tensor(next_state, dtype=torch.float)
|
||
|
action = torch.tensor(action, dtype=torch.long)
|
||
|
reward = torch.tensor(reward, dtype=torch.float)
|
||
|
|
||
|
if len(state.shape) == 1:
|
||
|
# reshape the state to make its values an (n, x) tuple
|
||
|
state = torch.unsqueeze(state, 0)
|
||
|
next_state = torch.unsqueeze(next_state, 0)
|
||
|
action = torch.unsqueeze(action, 0)
|
||
|
reward = torch.unsqueeze(reward, 0)
|
||
|
done = (done,)
|
||
|
|
||
|
# Prediction based on simplified Bellman's equation
|
||
|
# Predict Q values for current state
|
||
|
prediction = self.model(state)
|
||
|
target = prediction.clone()
|
||
|
for idx in range(len(done)):
|
||
|
Q = reward[idx]
|
||
|
if not done[idx]:
|
||
|
Q = reward[idx] + self.gamma * torch.max(self.model(next_state[idx]))
|
||
|
# set the target of the maximum value of the action to Q
|
||
|
target[idx][torch.argmax(action).item()] = Q
|
||
|
# Apply the loss function
|
||
|
self.optimizer.zero_grad()
|
||
|
loss = self.criterion(target, prediction)
|
||
|
loss.backward()
|
||
|
|
||
|
self.optimizer.step()
|