AI-Project/survival/ai/test.py

93 lines
4.0 KiB
Python
Raw Normal View History

2021-06-21 12:20:25 +02:00
import torch
import pygad
from pygad.torchga import torchga
def fitness_func(solution, sol_idx):
global data_inputs, data_outputs, torch_ga, model, loss_function
model_weights_dict = torchga.model_weights_as_dict(model=model,
weights_vector=solution)
# Use the current solution as the model parameters.
model.load_state_dict(model_weights_dict)
predictions = model(data_inputs)
abs_error = loss_function(predictions, data_outputs).detach().numpy() + 0.00000001
solution_fitness = 1.0 / abs_error
return solution_fitness
def callback_generation(ga_instance):
print("Generation = {generation}".format(generation=ga_instance.generations_completed))
print("Fitness = {fitness}".format(fitness=ga_instance.best_solution()[1]))
# Create the PyTorch model.
input_layer = torch.nn.Linear(3, 2)
relu_layer = torch.nn.ReLU()
output_layer = torch.nn.Linear(2, 1)
model = torch.nn.Sequential(input_layer,
relu_layer,
output_layer)
# print(model)
# Create an instance of the pygad.torchga.TorchGA class to build the initial population.
torch_ga = torchga.TorchGA(model=model,
num_solutions=10)
loss_function = torch.nn.L1Loss()
# Data inputs
data_inputs = torch.tensor([[0.02, 0.1, 0.15],
[0.7, 0.6, 0.8],
[1.5, 1.2, 1.7],
[3.2, 2.9, 3.1]])
# Data outputs
data_outputs = torch.tensor([[0.1],
[0.6],
[1.3],
[2.5]])
# Prepare the PyGAD parameters. Check the documentation for more information: https://pygad.readthedocs.io/en/latest/README_pygad_ReadTheDocs.html#pygad-ga-class
num_generations = 250 # Number of generations.
num_parents_mating = 5 # Number of solutions to be selected as parents in the mating pool.
initial_population = torch_ga.population_weights # Initial population of network weights
parent_selection_type = "sss" # Type of parent selection.
crossover_type = "single_point" # Type of the crossover operator.
mutation_type = "random" # Type of the mutation operator.
mutation_percent_genes = 10 # Percentage of genes to mutate. This parameter has no action if the parameter mutation_num_genes exists.
keep_parents = -1 # Number of parents to keep in the next population. -1 means keep all parents and 0 means keep nothing.
ga_instance = pygad.GA(num_generations=num_generations,
num_parents_mating=num_parents_mating,
initial_population=initial_population,
fitness_func=fitness_func,
parent_selection_type=parent_selection_type,
crossover_type=crossover_type,
mutation_type=mutation_type,
mutation_percent_genes=mutation_percent_genes,
keep_parents=keep_parents,
on_generation=callback_generation)
ga_instance.run()
# After the generations complete, some plots are showed that summarize how the outputs/fitness values evolve over generations.
ga_instance.plot_result(title="PyGAD & PyTorch - Iteration vs. Fitness", linewidth=4)
# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print("Fitness value of the best solution = {solution_fitness}".format(solution_fitness=solution_fitness))
print("Index of the best solution : {solution_idx}".format(solution_idx=solution_idx))
# Fetch the parameters of the best solution.
best_solution_weights = torchga.model_weights_as_dict(model=model,
weights_vector=solution)
model.load_state_dict(best_solution_weights)
predictions = model(data_inputs)
print("Predictions : \n", predictions.detach().numpy())
abs_error = loss_function(predictions, data_outputs)
print("Absolute Error : ", abs_error.detach().numpy())