AI-Project/survival/ai/model.py

79 lines
2.7 KiB
Python
Raw Normal View History

2021-06-06 19:55:55 +02:00
import os
import torch
from torch import nn, optim
import torch.nn.functional as functional
class LinearQNetwork(nn.Module):
def __init__(self, input_size, hidden_size, output_size, pretrained=False):
super().__init__()
self.linear_one = nn.Linear(input_size, hidden_size)
self.linear_two = nn.Linear(hidden_size, output_size)
self.pretrained = pretrained
def forward(self, x):
x = functional.relu(self.linear_one(x))
x = self.linear_two(x)
return x
def save(self, file_name='model.pth'):
model_directory = 'model'
if not os.path.exists(model_directory):
os.makedirs(model_directory)
file_path = os.path.join(model_directory, file_name)
torch.save(self.state_dict(), file_path)
@staticmethod
def load(input_size, hidden_size, output_size, file_name='model.pth'):
model_directory = 'model'
file_path = os.path.join(model_directory, file_name)
if os.path.isfile(file_path):
model = LinearQNetwork(input_size, hidden_size, output_size, True)
model.load_state_dict(torch.load(file_path))
model.eval()
return model
return LinearQNetwork(11, 256, 3)
class QTrainer:
def __init__(self, model, lr, gamma):
self.model = model
self.lr = lr
self.gamma = gamma
self.optimizer = optim.Adam(model.parameters(), lr=self.lr)
self.criterion = nn.MSELoss() # Mean squared error
def train_step(self, state, action, reward, next_state, done):
state = torch.tensor(state, dtype=torch.float)
next_state = torch.tensor(next_state, dtype=torch.float)
action = torch.tensor(action, dtype=torch.long)
reward = torch.tensor(reward, dtype=torch.float)
if len(state.shape) == 1:
# reshape the state to make its values an (n, x) tuple
state = torch.unsqueeze(state, 0)
next_state = torch.unsqueeze(next_state, 0)
action = torch.unsqueeze(action, 0)
reward = torch.unsqueeze(reward, 0)
done = (done,)
# Prediction based on simplified Bellman's equation
# Predict Q values for current state
prediction = self.model(state)
target = prediction.clone()
for idx in range(len(done)):
Q = reward[idx]
if not done[idx]:
Q = reward[idx] + self.gamma * torch.max(self.model(next_state[idx]))
# set the target of the maximum value of the action to Q
target[idx][torch.argmax(action).item()] = Q
# Apply the loss function
self.optimizer.zero_grad()
loss = self.criterion(target, prediction)
loss.backward()
self.optimizer.step()