Add genetic algorithm
This commit is contained in:
parent
ceb948587a
commit
78e9b3745d
@ -1,13 +1,15 @@
|
||||
import pygame
|
||||
|
||||
from survival.ai.genetic_algorithm import GeneticAlgorithm
|
||||
from survival.components.inventory_component import InventoryComponent
|
||||
from survival.game.game_map import GameMap
|
||||
from survival.generators.building_generator import BuildingGenerator
|
||||
from survival.generators.player_generator import PlayerGenerator
|
||||
from survival.generators.resource_generator import ResourceGenerator
|
||||
from survival.generators.world_generator import WorldGenerator
|
||||
from survival.settings import SCREEN_WIDTH, SCREEN_HEIGHT
|
||||
from survival.settings import SCREEN_WIDTH, SCREEN_HEIGHT, MUTATE_NETWORKS, LEARN
|
||||
from survival.systems.draw_system import DrawSystem
|
||||
from survival.systems.neural_system import NeuralSystem
|
||||
|
||||
|
||||
class Game:
|
||||
@ -15,10 +17,17 @@ class Game:
|
||||
self.world_generator = WorldGenerator(win, self.reset)
|
||||
self.game_map, self.world, self.camera = self.world_generator.create_world()
|
||||
self.run = True
|
||||
if LEARN and MUTATE_NETWORKS:
|
||||
self.genetic_algorithm = GeneticAlgorithm(self.world.get_processor(NeuralSystem), self.finish_training)
|
||||
|
||||
def reset(self):
|
||||
if LEARN and MUTATE_NETWORKS:
|
||||
self.genetic_algorithm.train()
|
||||
self.world_generator.reset_world()
|
||||
|
||||
def finish_training(self):
|
||||
self.run = False
|
||||
|
||||
def update(self, ms):
|
||||
events = pygame.event.get()
|
||||
|
||||
@ -46,4 +55,4 @@ if __name__ == '__main__':
|
||||
game = Game()
|
||||
|
||||
while game.run:
|
||||
game.update(clock.tick(60))
|
||||
game.update(clock.tick(500))
|
||||
|
84
survival/ai/genetic_algorithm.py
Normal file
84
survival/ai/genetic_algorithm.py
Normal file
@ -0,0 +1,84 @@
|
||||
import sys
|
||||
|
||||
from survival.ai.model import LinearQNetwork
|
||||
from survival.ai.optimizer import Optimizer
|
||||
|
||||
|
||||
class GeneticAlgorithm:
|
||||
GAMES_PER_NETWORK = 40
|
||||
PLOTS_COUNTER = 0
|
||||
CURRENT_GENERATION = 1
|
||||
|
||||
def __init__(self, neural_system, callback):
|
||||
self.callback = callback
|
||||
self.logs_file = open('genetic_logs.txt', 'w')
|
||||
self.original_stdout = sys.stdout
|
||||
sys.stdout = self.logs_file
|
||||
self.neural_system = neural_system
|
||||
self.generations = 20
|
||||
self.population = 10 # Minimum 5 needed to allow breeding
|
||||
self.nn_params = {
|
||||
'neurons': [128, 192, 256, 384, 512],
|
||||
'layers': [0, 1, 2, 3],
|
||||
'activation': ['relu', 'elu', 'tanh'],
|
||||
'ratio': [0.0007, 0.0009, 0.0011, 0.0013, 0.0015],
|
||||
'optimizer': ['RMSprop', 'Adam', 'SGD', 'Adagrad', 'Adadelta'],
|
||||
}
|
||||
self.optimizer = Optimizer(self.nn_params)
|
||||
self.networks: list[LinearQNetwork] = self.optimizer.create_population(self.population)
|
||||
self.finished = False
|
||||
self.trained_counter = 0
|
||||
self.iterations = 0
|
||||
self.trained_generations = 0
|
||||
print('Started generation 1...')
|
||||
self.change_network(self.networks[0])
|
||||
|
||||
def train(self):
|
||||
if self.iterations < GeneticAlgorithm.GAMES_PER_NETWORK - 1:
|
||||
self.iterations += 1
|
||||
return
|
||||
self.iterations = 0
|
||||
print(f'Network score: {self.optimizer.fitness(self.networks[self.trained_counter])}')
|
||||
self.trained_counter += 1
|
||||
|
||||
# If all networks in current population were trained
|
||||
if self.trained_counter >= self.population:
|
||||
# Get average score in current population
|
||||
avg_score = self.calculate_average_score(self.networks)
|
||||
print(f'Average population score: {avg_score}.')
|
||||
|
||||
results_file = open('genetic_results.txt', 'w')
|
||||
for network in self.networks:
|
||||
results_file.write(
|
||||
f'Network {network.id} params {network.network_params}. Avg score = {sum(network.scores) / len(network.scores)}\n')
|
||||
results_file.close()
|
||||
if self.trained_generations >= self.generations - 1:
|
||||
# Sort the final population
|
||||
self.networks = sorted(self.networks, key=lambda x: sum(x.scores) / len(x.scores), reverse=True)
|
||||
self.finished = True
|
||||
self.logs_file.close()
|
||||
sys.stdout = self.original_stdout
|
||||
self.callback()
|
||||
return
|
||||
|
||||
self.trained_generations += 1
|
||||
GeneticAlgorithm.CURRENT_GENERATION = self.trained_generations + 1
|
||||
print(f'Started generation {GeneticAlgorithm.CURRENT_GENERATION}...')
|
||||
self.networks = self.optimizer.evolve(self.networks)
|
||||
self.trained_counter = 0
|
||||
self.change_network(self.networks[self.trained_counter])
|
||||
|
||||
def calculate_average_score(self, networks):
|
||||
sums = 0
|
||||
lengths = 0
|
||||
for network in networks:
|
||||
sums += self.optimizer.fitness(network)
|
||||
lengths += len(network.scores)
|
||||
return sums / lengths
|
||||
|
||||
def change_network(self, net):
|
||||
GeneticAlgorithm.PLOTS_COUNTER += 1
|
||||
print(f"Changed network to {GeneticAlgorithm.PLOTS_COUNTER} {net.network_params}")
|
||||
self.logs_file.flush()
|
||||
net.id = GeneticAlgorithm.PLOTS_COUNTER
|
||||
self.neural_system.load_model(net)
|
@ -2,6 +2,8 @@ import numpy as np
|
||||
from IPython import display
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
from survival.settings import MUTATE_NETWORKS
|
||||
from survival.ai.genetic_algorithm import GeneticAlgorithm
|
||||
from survival.components.learning_component import LearningComponent
|
||||
from survival.components.position_component import PositionComponent
|
||||
from survival.game.enums import Direction
|
||||
@ -23,8 +25,8 @@ class LearningUtils:
|
||||
self.plot_mean_scores.append(mean_score)
|
||||
|
||||
def plot(self):
|
||||
display.clear_output(wait=True)
|
||||
display.display(plt.gcf())
|
||||
# display.clear_output(wait=True)
|
||||
# display.display(plt.gcf())
|
||||
plt.clf()
|
||||
plt.title('Results')
|
||||
plt.xlabel('Number of Games')
|
||||
@ -35,9 +37,12 @@ class LearningUtils:
|
||||
plt.text(len(self.plot_scores) - 1, self.plot_scores[-1], str(self.plot_scores[-1]))
|
||||
plt.text(len(self.plot_mean_scores) - 1, self.plot_mean_scores[-1], str(self.plot_mean_scores[-1]))
|
||||
self.plots += 1
|
||||
if MUTATE_NETWORKS:
|
||||
plt.savefig(f'model/plots/{GeneticAlgorithm.PLOTS_COUNTER}_{self.plots}.png')
|
||||
else:
|
||||
plt.savefig(f'model/plots/{self.plots}.png')
|
||||
plt.show(block=False)
|
||||
plt.pause(.1)
|
||||
# plt.pause(.1)
|
||||
|
||||
def append_action(self, action: Action, pos: PositionComponent):
|
||||
self.last_actions.append([action, pos.grid_position])
|
||||
|
@ -1,4 +1,5 @@
|
||||
import os
|
||||
import random
|
||||
|
||||
import torch
|
||||
from torch import nn, optim
|
||||
@ -6,16 +7,46 @@ import torch.nn.functional as functional
|
||||
|
||||
|
||||
class LinearQNetwork(nn.Module):
|
||||
def __init__(self, input_size, hidden_size, output_size, pretrained=False):
|
||||
TORCH_ACTiVATIONS = 'tanh'
|
||||
|
||||
def __init__(self, nn_params, input_size, output_size, randomize=True, params=None):
|
||||
super().__init__()
|
||||
self.linear_one = nn.Linear(input_size, hidden_size)
|
||||
self.linear_two = nn.Linear(hidden_size, output_size)
|
||||
self.pretrained = pretrained
|
||||
self.id = 0
|
||||
if params is None:
|
||||
params = {}
|
||||
self.params_choice = nn_params
|
||||
self.scores = []
|
||||
self.network_params = params
|
||||
if randomize:
|
||||
self.randomize()
|
||||
self.layers = nn.ModuleList()
|
||||
if self.network_params['layers'] == 0:
|
||||
self.layers.append(nn.Linear(input_size, output_size))
|
||||
else:
|
||||
self.layers.append(nn.Linear(input_size, self.network_params['neurons']))
|
||||
|
||||
for i in range(self.network_params['layers'] - 1):
|
||||
self.layers.append(nn.Linear(self.network_params['neurons'], self.network_params['neurons']))
|
||||
if self.network_params['layers'] > 0:
|
||||
self.ending_linear = nn.Linear(self.network_params['neurons'], output_size)
|
||||
self.layers.append(self.ending_linear)
|
||||
|
||||
if self.network_params['activation'] in self.TORCH_ACTiVATIONS:
|
||||
self.forward_func = getattr(torch, self.network_params['activation'])
|
||||
else:
|
||||
self.forward_func = getattr(functional, self.network_params['activation'])
|
||||
|
||||
def randomize(self):
|
||||
"""
|
||||
Sets random parameters for network.
|
||||
"""
|
||||
for key in self.params_choice:
|
||||
self.network_params[key] = random.choice(self.params_choice[key])
|
||||
|
||||
def forward(self, x):
|
||||
x = functional.relu(self.linear_one(x))
|
||||
x = self.linear_two(x)
|
||||
|
||||
for i in range(len(self.layers) - 1):
|
||||
x = self.forward_func(self.layers[i](x))
|
||||
x = self.layers[-1](x)
|
||||
return x
|
||||
|
||||
def save(self, file_name='model.pth'):
|
||||
@ -27,23 +58,24 @@ class LinearQNetwork(nn.Module):
|
||||
torch.save(self.state_dict(), file_path)
|
||||
|
||||
@staticmethod
|
||||
def load(input_size, hidden_size, output_size, file_name='model.pth'):
|
||||
def load(params, input_size, output_size, file_name='model.pth'):
|
||||
model_directory = 'model'
|
||||
file_path = os.path.join(model_directory, file_name)
|
||||
if os.path.isfile(file_path):
|
||||
model = LinearQNetwork(input_size, hidden_size, output_size, True)
|
||||
model = LinearQNetwork(params, input_size, output_size, True)
|
||||
model.load_state_dict(torch.load(file_path))
|
||||
model.eval()
|
||||
return model
|
||||
return LinearQNetwork(11, 256, 3)
|
||||
raise Exception(f'Could not find file {file_path}.')
|
||||
|
||||
|
||||
class QTrainer:
|
||||
def __init__(self, model, lr, gamma):
|
||||
def __init__(self, model, lr, gamma, optimizer):
|
||||
self.model = model
|
||||
self.lr = lr
|
||||
self.gamma = gamma
|
||||
self.optimizer = optim.Adam(model.parameters(), lr=self.lr)
|
||||
self.optimizer = getattr(optim, optimizer)(model.parameters(), lr=self.lr)
|
||||
# self.optimizer = optim.Adam(model.parameters(), lr=self.lr)
|
||||
self.criterion = nn.MSELoss() # Mean squared error
|
||||
|
||||
def train_step(self, state, action, reward, next_state, done):
|
||||
|
147
survival/ai/optimizer.py
Normal file
147
survival/ai/optimizer.py
Normal file
@ -0,0 +1,147 @@
|
||||
from functools import reduce
|
||||
from operator import add
|
||||
import random
|
||||
from typing import List
|
||||
|
||||
from survival.ai.model import LinearQNetwork
|
||||
from survival.settings import NEURAL_INPUT_SIZE, NEURAL_OUTPUT_SIZE
|
||||
|
||||
|
||||
class Optimizer:
|
||||
def __init__(self, params, retain=0.4,
|
||||
random_select=0.1, mutation_chance=0.2):
|
||||
self.mutation_chance = mutation_chance
|
||||
self.random_select = random_select
|
||||
self.retain = retain
|
||||
self.nn_params = params
|
||||
|
||||
def create_population(self, count: int):
|
||||
"""
|
||||
Creates 'count' networks from random parameters.
|
||||
:param count:
|
||||
:return:
|
||||
"""
|
||||
pop = []
|
||||
for _ in range(0, count):
|
||||
# Create a random network.
|
||||
network = LinearQNetwork(self.nn_params, NEURAL_INPUT_SIZE, NEURAL_OUTPUT_SIZE)
|
||||
# Add network to the population.
|
||||
pop.append(network)
|
||||
|
||||
return pop
|
||||
|
||||
@staticmethod
|
||||
def fitness(network: LinearQNetwork):
|
||||
return sum(network.scores) / len(network.scores)
|
||||
|
||||
def grade(self, pop: List[LinearQNetwork]) -> float:
|
||||
"""
|
||||
Finds average fitness for given population.
|
||||
"""
|
||||
summed = reduce(add, (self.fitness(network) for network in pop))
|
||||
return summed / float((len(pop)))
|
||||
|
||||
def breed(self, parent_one, parent_two):
|
||||
"""
|
||||
Creates a new network from given parents.
|
||||
:param parent_one:
|
||||
:param parent_two:
|
||||
:return:
|
||||
"""
|
||||
children = []
|
||||
for _ in range(2):
|
||||
|
||||
child = {}
|
||||
|
||||
# Loop through the parameters and pick params for the kid.
|
||||
for param in self.nn_params:
|
||||
child[param] = random.choice(
|
||||
[parent_one.network_params[param], parent_two.network_params[param]]
|
||||
)
|
||||
|
||||
# Create new network object.
|
||||
network = LinearQNetwork(self.nn_params, NEURAL_INPUT_SIZE, NEURAL_OUTPUT_SIZE)
|
||||
network.network_params = child
|
||||
|
||||
children.append(network)
|
||||
|
||||
return children
|
||||
|
||||
def mutate(self, network: LinearQNetwork):
|
||||
"""
|
||||
Randomly mutates one parameter of the given network.
|
||||
:param network:
|
||||
:return:
|
||||
"""
|
||||
mutation = random.choice(list(self.nn_params.keys()))
|
||||
|
||||
# Mutate one of the params.
|
||||
network.network_params[mutation] = random.choice(self.nn_params[mutation])
|
||||
|
||||
return network
|
||||
|
||||
def evolve(self, pop):
|
||||
"""
|
||||
Evolves a population of networks.
|
||||
"""
|
||||
# Get scores for each network.
|
||||
scores = [(self.fitness(network), network) for network in pop]
|
||||
|
||||
# Sort the scores.
|
||||
scores = [x[1] for x in sorted(scores, key=lambda x: x[0], reverse=True)]
|
||||
|
||||
# Get the number we want to keep for the next gen.
|
||||
retain_length = int(len(scores) * self.retain)
|
||||
|
||||
# Keep the best networks as parents for next generation.
|
||||
parents = scores[:retain_length]
|
||||
|
||||
# Keep some other networks
|
||||
for network in scores[retain_length:]:
|
||||
if self.random_select > random.random():
|
||||
parents.append(network)
|
||||
|
||||
# Reset kept networks
|
||||
reseted_networks = []
|
||||
for network in parents:
|
||||
net = LinearQNetwork(self.nn_params, NEURAL_INPUT_SIZE, NEURAL_OUTPUT_SIZE)
|
||||
net.network_params = network.network_params
|
||||
reseted_networks.append(net)
|
||||
|
||||
parents = reseted_networks
|
||||
|
||||
# Randomly mutate some of the networks.
|
||||
for parent in parents:
|
||||
if self.mutation_chance > random.random():
|
||||
parent = self.mutate(parent)
|
||||
|
||||
# Determine the number of freed spots for the next generation.
|
||||
parents_length = len(parents)
|
||||
desired_length = len(pop) - parents_length
|
||||
children = []
|
||||
|
||||
# Fill missing spots with new children.
|
||||
while len(children) < desired_length:
|
||||
# Get random parents.
|
||||
p1 = random.randint(0, parents_length - 1)
|
||||
p2 = random.randint(0, parents_length - 1)
|
||||
|
||||
# Ensure they are not the same network.
|
||||
if p1 != p2:
|
||||
p1 = parents[p1]
|
||||
p2 = parents[p2]
|
||||
|
||||
# Breed networks.
|
||||
babies = self.breed(p1, p2)
|
||||
|
||||
# Add children one at a time.
|
||||
for baby in babies:
|
||||
# Don't grow larger than the desired length.
|
||||
if len(children) < desired_length:
|
||||
children.append(baby)
|
||||
|
||||
# parents_params = [n.network_params for n in parents]
|
||||
# children_params = [n.network_params for n in children]
|
||||
# parents_params.extend(children_params)
|
||||
parents.extend(children)
|
||||
return parents
|
93
survival/ai/test.py
Normal file
93
survival/ai/test.py
Normal file
@ -0,0 +1,93 @@
|
||||
import torch
|
||||
import pygad
|
||||
from pygad.torchga import torchga
|
||||
|
||||
|
||||
def fitness_func(solution, sol_idx):
|
||||
global data_inputs, data_outputs, torch_ga, model, loss_function
|
||||
|
||||
model_weights_dict = torchga.model_weights_as_dict(model=model,
|
||||
weights_vector=solution)
|
||||
|
||||
# Use the current solution as the model parameters.
|
||||
model.load_state_dict(model_weights_dict)
|
||||
|
||||
predictions = model(data_inputs)
|
||||
abs_error = loss_function(predictions, data_outputs).detach().numpy() + 0.00000001
|
||||
|
||||
solution_fitness = 1.0 / abs_error
|
||||
|
||||
return solution_fitness
|
||||
|
||||
def callback_generation(ga_instance):
|
||||
print("Generation = {generation}".format(generation=ga_instance.generations_completed))
|
||||
print("Fitness = {fitness}".format(fitness=ga_instance.best_solution()[1]))
|
||||
|
||||
# Create the PyTorch model.
|
||||
input_layer = torch.nn.Linear(3, 2)
|
||||
relu_layer = torch.nn.ReLU()
|
||||
output_layer = torch.nn.Linear(2, 1)
|
||||
|
||||
model = torch.nn.Sequential(input_layer,
|
||||
relu_layer,
|
||||
output_layer)
|
||||
# print(model)
|
||||
|
||||
# Create an instance of the pygad.torchga.TorchGA class to build the initial population.
|
||||
torch_ga = torchga.TorchGA(model=model,
|
||||
num_solutions=10)
|
||||
|
||||
loss_function = torch.nn.L1Loss()
|
||||
|
||||
# Data inputs
|
||||
data_inputs = torch.tensor([[0.02, 0.1, 0.15],
|
||||
[0.7, 0.6, 0.8],
|
||||
[1.5, 1.2, 1.7],
|
||||
[3.2, 2.9, 3.1]])
|
||||
|
||||
# Data outputs
|
||||
data_outputs = torch.tensor([[0.1],
|
||||
[0.6],
|
||||
[1.3],
|
||||
[2.5]])
|
||||
|
||||
# Prepare the PyGAD parameters. Check the documentation for more information: https://pygad.readthedocs.io/en/latest/README_pygad_ReadTheDocs.html#pygad-ga-class
|
||||
num_generations = 250 # Number of generations.
|
||||
num_parents_mating = 5 # Number of solutions to be selected as parents in the mating pool.
|
||||
initial_population = torch_ga.population_weights # Initial population of network weights
|
||||
parent_selection_type = "sss" # Type of parent selection.
|
||||
crossover_type = "single_point" # Type of the crossover operator.
|
||||
mutation_type = "random" # Type of the mutation operator.
|
||||
mutation_percent_genes = 10 # Percentage of genes to mutate. This parameter has no action if the parameter mutation_num_genes exists.
|
||||
keep_parents = -1 # Number of parents to keep in the next population. -1 means keep all parents and 0 means keep nothing.
|
||||
|
||||
ga_instance = pygad.GA(num_generations=num_generations,
|
||||
num_parents_mating=num_parents_mating,
|
||||
initial_population=initial_population,
|
||||
fitness_func=fitness_func,
|
||||
parent_selection_type=parent_selection_type,
|
||||
crossover_type=crossover_type,
|
||||
mutation_type=mutation_type,
|
||||
mutation_percent_genes=mutation_percent_genes,
|
||||
keep_parents=keep_parents,
|
||||
on_generation=callback_generation)
|
||||
|
||||
ga_instance.run()
|
||||
|
||||
# After the generations complete, some plots are showed that summarize how the outputs/fitness values evolve over generations.
|
||||
ga_instance.plot_result(title="PyGAD & PyTorch - Iteration vs. Fitness", linewidth=4)
|
||||
|
||||
# Returning the details of the best solution.
|
||||
solution, solution_fitness, solution_idx = ga_instance.best_solution()
|
||||
print("Fitness value of the best solution = {solution_fitness}".format(solution_fitness=solution_fitness))
|
||||
print("Index of the best solution : {solution_idx}".format(solution_idx=solution_idx))
|
||||
|
||||
# Fetch the parameters of the best solution.
|
||||
best_solution_weights = torchga.model_weights_as_dict(model=model,
|
||||
weights_vector=solution)
|
||||
model.load_state_dict(best_solution_weights)
|
||||
predictions = model(data_inputs)
|
||||
print("Predictions : \n", predictions.detach().numpy())
|
||||
|
||||
abs_error = loss_function(predictions, data_outputs)
|
||||
print("Absolute Error : ", abs_error.detach().numpy())
|
@ -1,6 +1,7 @@
|
||||
import pygame.font
|
||||
|
||||
from survival import settings
|
||||
from survival.ai.genetic_algorithm import GeneticAlgorithm
|
||||
from survival.settings import MUTATE_NETWORKS, SCREEN_HEIGHT, SCREEN_WIDTH
|
||||
from survival.components.inventory_component import InventoryComponent
|
||||
from survival.generators.resource_type import ResourceType
|
||||
from survival.game.image import Image
|
||||
@ -8,8 +9,8 @@ from survival.game.image import Image
|
||||
|
||||
class UserInterface:
|
||||
def __init__(self, window):
|
||||
self.width = settings.SCREEN_WIDTH
|
||||
self.height = settings.SCREEN_HEIGHT
|
||||
self.width = SCREEN_WIDTH
|
||||
self.height = SCREEN_HEIGHT
|
||||
self.window = window
|
||||
self.pos = (self.width - 240, 50)
|
||||
self.scale = 2
|
||||
@ -44,4 +45,3 @@ class UserInterface:
|
||||
|
||||
textsurface = self.font.render(str(items_count), False, (255, 255, 255))
|
||||
self.window.blit(textsurface, (image.pos[0] + 48, image.pos[1] + 36))
|
||||
|
||||
|
@ -46,7 +46,8 @@ class TileGenerator:
|
||||
|
||||
@staticmethod
|
||||
def generate_biome_tiles(width: int, height: int):
|
||||
seed = random.randint(1, 10)
|
||||
# Use static seed to allow smooth learning of genetic algorithm
|
||||
seed = 1
|
||||
octaves = 10
|
||||
file_name = f'seeds/{seed}.bin'
|
||||
biomes_file = Path(file_name)
|
||||
|
@ -1,4 +1,7 @@
|
||||
from pathlib import Path
|
||||
|
||||
from survival import esper, ResourceGenerator, PlayerGenerator
|
||||
from survival.ai.model import LinearQNetwork
|
||||
from survival.components.consumption_component import ConsumptionComponent
|
||||
from survival.components.direction_component import DirectionChangeComponent
|
||||
from survival.components.inventory_component import InventoryComponent
|
||||
@ -12,7 +15,8 @@ from survival.esper import World
|
||||
from survival.game.camera import Camera
|
||||
from survival.game.game_map import GameMap
|
||||
from survival.generators.resource_type import ResourceType
|
||||
from survival.settings import PLAYER_START_POSITION, STARTING_RESOURCES_AMOUNT, SCREEN_WIDTH, SCREEN_HEIGHT
|
||||
from survival.settings import PLAYER_START_POSITION, STARTING_RESOURCES_AMOUNT, SCREEN_WIDTH, SCREEN_HEIGHT, \
|
||||
MUTATE_NETWORKS, NETWORK_PARAMS, NEURAL_OUTPUT_SIZE, NEURAL_INPUT_SIZE
|
||||
from survival.systems.automation_system import AutomationSystem
|
||||
from survival.systems.camera_system import CameraSystem
|
||||
from survival.systems.collision_system import CollisionSystem
|
||||
@ -42,6 +46,14 @@ class WorldGenerator:
|
||||
self.world.add_processor(MovementSystem(self.game_map), priority=20)
|
||||
self.world.add_processor(CollisionSystem(self.game_map), priority=30)
|
||||
self.world.add_processor(NeuralSystem(self.game_map, self.callback), priority=50)
|
||||
if not MUTATE_NETWORKS:
|
||||
model_path = Path("/model/model.pth")
|
||||
if model_path.is_file():
|
||||
self.world.get_processor(NeuralSystem).load_model(
|
||||
LinearQNetwork.load(NETWORK_PARAMS, NEURAL_INPUT_SIZE, NEURAL_OUTPUT_SIZE))
|
||||
else:
|
||||
self.world.get_processor(NeuralSystem).load_model(
|
||||
LinearQNetwork(NETWORK_PARAMS, NEURAL_INPUT_SIZE, NEURAL_OUTPUT_SIZE, False, NETWORK_PARAMS))
|
||||
self.world.add_processor(DrawSystem(self.camera))
|
||||
self.world.add_processor(TimeSystem())
|
||||
self.world.add_processor(AutomationSystem(self.game_map))
|
||||
@ -51,8 +63,8 @@ class WorldGenerator:
|
||||
self.world.add_processor(VisionSystem(self.camera))
|
||||
|
||||
self.player = PlayerGenerator().create_player(self.world, self.game_map)
|
||||
# self.world.get_processor(DrawSystem).initialize_interface(
|
||||
# self.world.component_for_entity(self.player, InventoryComponent))
|
||||
self.world.get_processor(DrawSystem).initialize_interface(
|
||||
self.world.component_for_entity(self.player, InventoryComponent))
|
||||
|
||||
# BuildingGenerator().create_home(self.world, self.game_map)
|
||||
self.resource_generator.generate_resources(self.player)
|
||||
|
@ -1,7 +1,18 @@
|
||||
SCREEN_WIDTH = 1000
|
||||
SCREEN_HEIGHT = 600
|
||||
RESOURCES_AMOUNT = 100
|
||||
RESOURCES_AMOUNT = 175
|
||||
DIRECTION_CHANGE_DELAY = 5
|
||||
PLAYER_START_POSITION = [20, 10]
|
||||
STARTING_RESOURCES_AMOUNT = 10
|
||||
STARTING_RESOURCES_AMOUNT = 5
|
||||
AGENT_VISION_RANGE = 5
|
||||
NEURAL_INPUT_SIZE = 11
|
||||
NEURAL_OUTPUT_SIZE = 3
|
||||
LEARN = True
|
||||
MUTATE_NETWORKS = True
|
||||
NETWORK_PARAMS = {
|
||||
"neurons": 256,
|
||||
"layers": 1,
|
||||
"activation": 'relu',
|
||||
"ratio": 0.001,
|
||||
"optimizer": 'Adam'
|
||||
}
|
||||
|
@ -23,6 +23,7 @@ class CollisionSystem(esper.Processor):
|
||||
moving.target = tuple(map(operator.add, vector, pos.grid_position))
|
||||
moving.direction_vector = vector
|
||||
if self.check_collision(moving.target):
|
||||
self.world.add_component(ent, ConsumeComponent(0.05))
|
||||
self.world.remove_component(ent, MovingComponent)
|
||||
onCol.call_all()
|
||||
colliding_object: int = self.map.get_entity(moving.target)
|
||||
|
@ -4,6 +4,7 @@ from collections import deque
|
||||
import torch
|
||||
|
||||
from survival import esper, GameMap
|
||||
from survival.ai.genetic_algorithm import GeneticAlgorithm
|
||||
from survival.components.direction_component import DirectionChangeComponent
|
||||
from survival.components.inventory_component import InventoryComponent
|
||||
from survival.components.moving_component import MovingComponent
|
||||
@ -13,11 +14,10 @@ from survival.components.time_component import TimeComponent
|
||||
from survival.ai.graph_search import Action
|
||||
from survival.ai.learning_utils import get_state, LearningUtils
|
||||
from survival.ai.model import LinearQNetwork, QTrainer
|
||||
from survival.settings import LEARN, MUTATE_NETWORKS
|
||||
|
||||
MAX_MEMORY = 100_000
|
||||
BATCH_SIZE = 1000
|
||||
LR = 0.001
|
||||
LEARN = False
|
||||
|
||||
|
||||
class NeuralSystem(esper.Processor):
|
||||
@ -25,17 +25,27 @@ class NeuralSystem(esper.Processor):
|
||||
self.game_map = game_map
|
||||
self.reset_game = callback
|
||||
self.n_games = 0 # number of games played
|
||||
if MUTATE_NETWORKS:
|
||||
self.starting_epsilon = GeneticAlgorithm.GAMES_PER_NETWORK / 2
|
||||
else:
|
||||
self.starting_epsilon = 100
|
||||
self.epsilon = 0 # controlls the randomness
|
||||
self.gamma = 0.9 # discount rate
|
||||
self.memory = deque(maxlen=MAX_MEMORY) # exceeding memory removes the left elements to make more space
|
||||
self.model = LinearQNetwork.load(11, 256, 3)
|
||||
if self.model.pretrained:
|
||||
self.starting_epsilon = -1
|
||||
self.trainer = QTrainer(self.model, lr=LR, gamma=self.gamma)
|
||||
self.model = None # self.model = LinearQNetwork.load(11, 256, 3)
|
||||
self.trainer = None # QTrainer(self.model, lr=LR, gamma=self.gamma)
|
||||
self.utils = LearningUtils()
|
||||
self.best_action = None
|
||||
|
||||
def load_model(self, model: LinearQNetwork):
|
||||
self.model = model
|
||||
self.trainer = QTrainer(self.model, self.model.network_params['ratio'], self.gamma,
|
||||
self.model.network_params['optimizer'])
|
||||
self.utils = LearningUtils()
|
||||
self.memory = deque(maxlen=MAX_MEMORY)
|
||||
self.starting_epsilon = GeneticAlgorithm.GAMES_PER_NETWORK / 2
|
||||
self.n_games = 0
|
||||
|
||||
def remember(self, state, action, reward, next_state, done):
|
||||
self.memory.append((state, action, reward, next_state, done))
|
||||
|
||||
@ -119,11 +129,13 @@ class NeuralSystem(esper.Processor):
|
||||
self.train_long_memory()
|
||||
if learning.score > learning.record:
|
||||
learning.record = learning.score
|
||||
if LEARN:
|
||||
if LEARN and not MUTATE_NETWORKS:
|
||||
self.model.save()
|
||||
|
||||
print('Game', self.n_games, 'Score', learning.score, 'Record', learning.record)
|
||||
# print('Game', self.n_games, 'Score', learning.score, 'Record', learning.record)
|
||||
self.utils.add_scores(learning, self.n_games)
|
||||
|
||||
self.model.scores.append(learning.score)
|
||||
learning.score = 0
|
||||
self.utils.plot()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user