Compare commits
20 Commits
Author | SHA1 | Date | |
---|---|---|---|
3dd86ea96b | |||
|
638170f4e2 | ||
|
78e9b3745d | ||
|
ceb948587a | ||
|
fd0d532350 | ||
|
bbfaedf925 | ||
|
40f620b3ec | ||
|
43e97b6614 | ||
|
005beb224d | ||
|
094e33bb0c | ||
|
3c0fe20132 | ||
|
88f13d7d0d | ||
|
9f86f7dd93 | ||
|
deea62212c | ||
|
869dcbc124 | ||
342a74c1d8 | |||
|
a82f52d318 | ||
|
551053fd22 | ||
|
840eab678b | ||
977f01bbd9 |
100
data.txt
Normal file
100
data.txt
Normal file
@ -0,0 +1,100 @@
|
||||
{"weight": 9, "eatable": true, "toughness": 1, "resource": "food"}
|
||||
{"weight": 11, "eatable": true, "toughness": 0, "resource": "wood"}
|
||||
{"weight": 5, "eatable": false, "toughness": 1, "resource": "wood"}
|
||||
{"weight": 11, "eatable": true, "toughness": 0, "resource": "wood"}
|
||||
{"weight": 7, "eatable": true, "toughness": 2, "resource": "food"}
|
||||
{"weight": 7, "eatable": false, "toughness": 3, "resource": "wood"}
|
||||
{"weight": 5, "eatable": true, "toughness": 3, "resource": "food"}
|
||||
{"weight": 5, "eatable": false, "toughness": 3, "resource": "wood"}
|
||||
{"weight": 1, "eatable": true, "toughness": 0, "resource": "water"}
|
||||
{"weight": 2, "eatable": false, "toughness": 0, "resource": "wood"}
|
||||
{"weight": 4, "eatable": false, "toughness": 1, "resource": "wood"}
|
||||
{"weight": 1, "eatable": true, "toughness": 3, "resource": "food"}
|
||||
{"weight": 3, "eatable": false, "toughness": 2, "resource": "wood"}
|
||||
{"weight": 6, "eatable": true, "toughness": 1, "resource": "food"}
|
||||
{"weight": 7, "eatable": false, "toughness": 0, "resource": "wood"}
|
||||
{"weight": 1, "eatable": false, "toughness": 1, "resource": "wood"}
|
||||
{"weight": 6, "eatable": false, "toughness": 3, "resource": "wood"}
|
||||
{"weight": 2, "eatable": false, "toughness": 2, "resource": "wood"}
|
||||
{"weight": 10, "eatable": false, "toughness": 3, "resource": "wood"}
|
||||
{"weight": 6, "eatable": false, "toughness": 1, "resource": "wood"}
|
||||
{"weight": 11, "eatable": false, "toughness": 3, "resource": "wood"}
|
||||
{"weight": 2, "eatable": false, "toughness": 1, "resource": "wood"}
|
||||
{"weight": 3, "eatable": true, "toughness": 1, "resource": "food"}
|
||||
{"weight": 6, "eatable": true, "toughness": 3, "resource": "food"}
|
||||
{"weight": 8, "eatable": false, "toughness": 3, "resource": "wood"}
|
||||
{"weight": 6, "eatable": true, "toughness": 3, "resource": "food"}
|
||||
{"weight": 9, "eatable": true, "toughness": 1, "resource": "food"}
|
||||
{"weight": 9, "eatable": true, "toughness": 1, "resource": "food"}
|
||||
{"weight": 11, "eatable": false, "toughness": 0, "resource": "wood"}
|
||||
{"weight": 4, "eatable": true, "toughness": 3, "resource": "food"}
|
||||
{"weight": 4, "eatable": true, "toughness": 2, "resource": "food"}
|
||||
{"weight": 4, "eatable": false, "toughness": 3, "resource": "wood"}
|
||||
{"weight": 1, "eatable": true, "toughness": 3, "resource": "food"}
|
||||
{"weight": 5, "eatable": true, "toughness": 2, "resource": "food"}
|
||||
{"weight": 3, "eatable": false, "toughness": 1, "resource": "wood"}
|
||||
{"weight": 0, "eatable": false, "toughness": 2, "resource": "wood"}
|
||||
{"weight": 10, "eatable": true, "toughness": 1, "resource": "food"}
|
||||
{"weight": 9, "eatable": true, "toughness": 0, "resource": "water"}
|
||||
{"weight": 4, "eatable": false, "toughness": 3, "resource": "wood"}
|
||||
{"weight": 10, "eatable": true, "toughness": 0, "resource": "water"}
|
||||
{"weight": 10, "eatable": true, "toughness": 3, "resource": "food"}
|
||||
{"weight": 11, "eatable": false, "toughness": 0, "resource": "wood"}
|
||||
{"weight": 8, "eatable": true, "toughness": 1, "resource": "food"}
|
||||
{"weight": 7, "eatable": true, "toughness": 1, "resource": "food"}
|
||||
{"weight": 1, "eatable": true, "toughness": 1, "resource": "food"}
|
||||
{"weight": 11, "eatable": false, "toughness": 1, "resource": "wood"}
|
||||
{"weight": 11, "eatable": false, "toughness": 3, "resource": "wood"}
|
||||
{"weight": 3, "eatable": false, "toughness": 3, "resource": "wood"}
|
||||
{"weight": 2, "eatable": true, "toughness": 1, "resource": "food"}
|
||||
{"weight": 4, "eatable": false, "toughness": 2, "resource": "wood"}
|
||||
{"weight": 6, "eatable": true, "toughness": 0, "resource": "water"}
|
||||
{"weight": 2, "eatable": true, "toughness": 2, "resource": "food"}
|
||||
{"weight": 10, "eatable": true, "toughness": 2, "resource": "food"}
|
||||
{"weight": 0, "eatable": true, "toughness": 0, "resource": "water"}
|
||||
{"weight": 10, "eatable": true, "toughness": 0, "resource": "water"}
|
||||
{"weight": 9, "eatable": true, "toughness": 0, "resource": "water"}
|
||||
{"weight": 2, "eatable": true, "toughness": 0, "resource": "water"}
|
||||
{"weight": 8, "eatable": true, "toughness": 2, "resource": "food"}
|
||||
{"weight": 9, "eatable": false, "toughness": 2, "resource": "wood"}
|
||||
{"weight": 6, "eatable": true, "toughness": 2, "resource": "food"}
|
||||
{"weight": 5, "eatable": true, "toughness": 2, "resource": "food"}
|
||||
{"weight": 4, "eatable": true, "toughness": 2, "resource": "food"}
|
||||
{"weight": 0, "eatable": true, "toughness": 3, "resource": "food"}
|
||||
{"weight": 8, "eatable": false, "toughness": 1, "resource": "wood"}
|
||||
{"weight": 2, "eatable": true, "toughness": 1, "resource": "food"}
|
||||
{"weight": 2, "eatable": false, "toughness": 1, "resource": "wood"}
|
||||
{"weight": 11, "eatable": false, "toughness": 0, "resource": "wood"}
|
||||
{"weight": 0, "eatable": true, "toughness": 1, "resource": "food"}
|
||||
{"weight": 9, "eatable": false, "toughness": 0, "resource": "wood"}
|
||||
{"weight": 0, "eatable": true, "toughness": 0, "resource": "water"}
|
||||
{"weight": 5, "eatable": false, "toughness": 3, "resource": "wood"}
|
||||
{"weight": 3, "eatable": false, "toughness": 3, "resource": "wood"}
|
||||
{"weight": 0, "eatable": true, "toughness": 0, "resource": "water"}
|
||||
{"weight": 7, "eatable": false, "toughness": 2, "resource": "wood"}
|
||||
{"weight": 4, "eatable": true, "toughness": 1, "resource": "food"}
|
||||
{"weight": 4, "eatable": false, "toughness": 0, "resource": "wood"}
|
||||
{"weight": 3, "eatable": false, "toughness": 3, "resource": "wood"}
|
||||
{"weight": 8, "eatable": false, "toughness": 3, "resource": "wood"}
|
||||
{"weight": 10, "eatable": false, "toughness": 1, "resource": "wood"}
|
||||
{"weight": 3, "eatable": true, "toughness": 1, "resource": "food"}
|
||||
{"weight": 3, "eatable": true, "toughness": 1, "resource": "food"}
|
||||
{"weight": 1, "eatable": false, "toughness": 2, "resource": "wood"}
|
||||
{"weight": 1, "eatable": false, "toughness": 2, "resource": "wood"}
|
||||
{"weight": 5, "eatable": true, "toughness": 1, "resource": "food"}
|
||||
{"weight": 5, "eatable": true, "toughness": 2, "resource": "food"}
|
||||
{"weight": 9, "eatable": false, "toughness": 1, "resource": "wood"}
|
||||
{"weight": 3, "eatable": true, "toughness": 3, "resource": "food"}
|
||||
{"weight": 6, "eatable": true, "toughness": 2, "resource": "food"}
|
||||
{"weight": 7, "eatable": true, "toughness": 0, "resource": "water"}
|
||||
{"weight": 9, "eatable": false, "toughness": 0, "resource": "wood"}
|
||||
{"weight": 10, "eatable": true, "toughness": 3, "resource": "food"}
|
||||
{"weight": 9, "eatable": false, "toughness": 0, "resource": "wood"}
|
||||
{"weight": 11, "eatable": true, "toughness": 0, "resource": "wood"}
|
||||
{"weight": 10, "eatable": true, "toughness": 3, "resource": "food"}
|
||||
{"weight": 5, "eatable": true, "toughness": 3, "resource": "food"}
|
||||
{"weight": 10, "eatable": false, "toughness": 1, "resource": "wood"}
|
||||
{"weight": 10, "eatable": true, "toughness": 2, "resource": "food"}
|
||||
{"weight": 5, "eatable": true, "toughness": 0, "resource": "water"}
|
||||
{"weight": 0, "eatable": false, "toughness": 2, "resource": "wood"}
|
||||
{"weight": 10, "eatable": false, "toughness": 2, "resource": "wood"}
|
28
generate_test_data.py
Normal file
28
generate_test_data.py
Normal file
@ -0,0 +1,28 @@
|
||||
import random
|
||||
|
||||
|
||||
def generate_data():
|
||||
f = open("data.txt", "w")
|
||||
for i in range(100):
|
||||
weight = random.randint(0, 11)
|
||||
eatable = bool(random.randint(0, 1))
|
||||
toughness = random.randint(0, 3)
|
||||
f.write('{')
|
||||
f.write(
|
||||
f'"weight": {weight}, "eatable": {str(eatable).lower()}, "toughness": {toughness}, "resource": "{get_resource_type(weight, eatable, toughness)}"')
|
||||
f.write('}')
|
||||
f.write('\n')
|
||||
f.close()
|
||||
|
||||
|
||||
def get_resource_type(weight, eatable, toughness):
|
||||
if weight > 10 or eatable is False:
|
||||
return "wood"
|
||||
|
||||
if toughness < 1:
|
||||
return "water"
|
||||
|
||||
return "food"
|
||||
|
||||
|
||||
generate_data()
|
@ -1,14 +1,47 @@
|
||||
import pygame
|
||||
|
||||
from settings import SCREEN_WIDTH, SCREEN_HEIGHT
|
||||
from survival.camera import Camera
|
||||
from survival.ai.genetic_algorithm import GeneticAlgorithm
|
||||
from survival.components.inventory_component import InventoryComponent
|
||||
from survival.game_map import GameMap
|
||||
from survival.game.game_map import GameMap
|
||||
from survival.generators.building_generator import BuildingGenerator
|
||||
from survival.generators.player_generator import PlayerGenerator
|
||||
from survival.generators.resource_generator import ResourceGenerator
|
||||
from survival.generators.world_generator import WorldGenerator
|
||||
from survival.settings import SCREEN_WIDTH, SCREEN_HEIGHT, MUTATE_NETWORKS, LEARN
|
||||
from survival.systems.draw_system import DrawSystem
|
||||
from survival.systems.neural_system import NeuralSystem
|
||||
|
||||
|
||||
class Game:
|
||||
def __init__(self):
|
||||
self.world_generator = WorldGenerator(win, self.reset)
|
||||
self.game_map, self.world, self.camera = self.world_generator.create_world()
|
||||
self.run = True
|
||||
if LEARN and MUTATE_NETWORKS:
|
||||
self.genetic_algorithm = GeneticAlgorithm(self.world.get_processor(NeuralSystem), self.finish_training)
|
||||
|
||||
def reset(self):
|
||||
if LEARN and MUTATE_NETWORKS:
|
||||
self.genetic_algorithm.train()
|
||||
self.world_generator.reset_world()
|
||||
|
||||
def finish_training(self):
|
||||
self.run = False
|
||||
|
||||
def update(self, ms):
|
||||
events = pygame.event.get()
|
||||
|
||||
for event in events:
|
||||
if event.type == pygame.QUIT:
|
||||
self.run = False
|
||||
if pygame.key.get_pressed()[pygame.K_DELETE]:
|
||||
self.reset()
|
||||
|
||||
win.fill((0, 0, 0))
|
||||
self.game_map.draw(self.camera)
|
||||
self.world.process(ms)
|
||||
pygame.display.update()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
pygame.init()
|
||||
@ -19,32 +52,7 @@ if __name__ == '__main__':
|
||||
pygame.display.set_caption("AI Project")
|
||||
|
||||
clock = pygame.time.Clock()
|
||||
game = Game()
|
||||
|
||||
game_map = GameMap(int(SCREEN_WIDTH / 32) * 2, 2 * int(SCREEN_HEIGHT / 32) + 1)
|
||||
camera = Camera(game_map.width * 32, game_map.height * 32, win)
|
||||
|
||||
world = WorldGenerator().create_world(camera, game_map)
|
||||
player = PlayerGenerator().create_player(world, game_map)
|
||||
world.get_processor(DrawSystem).initialize_interface(world.component_for_entity(player, InventoryComponent))
|
||||
building = BuildingGenerator().create_home(world, game_map)
|
||||
|
||||
ResourceGenerator(world, game_map).generate_resources(player)
|
||||
|
||||
run = True
|
||||
|
||||
while run:
|
||||
# Set the framerate
|
||||
ms = clock.tick(60)
|
||||
|
||||
events = pygame.event.get()
|
||||
|
||||
for event in events:
|
||||
if event.type == pygame.QUIT:
|
||||
run = False
|
||||
|
||||
keys = pygame.key.get_pressed()
|
||||
|
||||
win.fill((0, 0, 0))
|
||||
game_map.draw(camera)
|
||||
world.process(ms)
|
||||
pygame.display.update()
|
||||
while game.run:
|
||||
game.update(clock.tick(500))
|
||||
|
BIN
survival/ai/decision_tree/classifier.joblib
Normal file
BIN
survival/ai/decision_tree/classifier.joblib
Normal file
Binary file not shown.
60
survival/ai/decision_tree/decision_tree.py
Normal file
60
survival/ai/decision_tree/decision_tree.py
Normal file
@ -0,0 +1,60 @@
|
||||
import json
|
||||
|
||||
from joblib import dump, load
|
||||
from matplotlib import pyplot as plt
|
||||
from sklearn import tree
|
||||
from sklearn.feature_extraction import DictVectorizer
|
||||
|
||||
|
||||
class DecisionTree:
|
||||
def __init__(self):
|
||||
self.clf = None
|
||||
self.vec = None
|
||||
|
||||
def build(self, depth: int):
|
||||
path = "tree_data.json"
|
||||
|
||||
samples = []
|
||||
results = []
|
||||
|
||||
with open(path, "r") as training_file:
|
||||
for sample in training_file:
|
||||
sample, result = self.process_input(sample)
|
||||
samples.append(sample)
|
||||
results.append(result)
|
||||
|
||||
self.vec = DictVectorizer()
|
||||
self.clf = tree.DecisionTreeClassifier(max_depth=depth)
|
||||
self.clf = self.clf.fit(self.vec.fit_transform(samples).toarray(), results)
|
||||
|
||||
def save_model(self, clf_file, vec_file):
|
||||
dump(self.clf, clf_file)
|
||||
dump(self.vec, vec_file)
|
||||
|
||||
def load_model(self, clf_file, vec_file):
|
||||
self.clf = load(clf_file)
|
||||
self.vec = load(vec_file)
|
||||
|
||||
def predict_answer(self, params):
|
||||
return self.clf.predict(self.vec.transform(params).toarray())
|
||||
|
||||
def plot_tree(self):
|
||||
print('Plotting tree...')
|
||||
fig = plt.figure(figsize=(36, 27))
|
||||
_ = tree.plot_tree(self.clf,
|
||||
feature_names=self.vec.get_feature_names(),
|
||||
filled=True)
|
||||
fig.savefig("decistion_tree.png")
|
||||
print('Success!')
|
||||
|
||||
@staticmethod
|
||||
def process_input(line):
|
||||
data = json.loads(line.strip())
|
||||
result = data['result']
|
||||
del data['result']
|
||||
del data['food_result']
|
||||
del data['water_result']
|
||||
del data['wood_result']
|
||||
sample = data
|
||||
|
||||
return sample, result
|
124
survival/ai/decision_tree/decision_tree_data.py
Normal file
124
survival/ai/decision_tree/decision_tree_data.py
Normal file
@ -0,0 +1,124 @@
|
||||
import random
|
||||
from typing import Dict
|
||||
|
||||
from survival.ai.decision_tree.decision_tree import DecisionTree
|
||||
from survival.generators.resource_type import ResourceType
|
||||
|
||||
|
||||
class TreeDataGenerator:
|
||||
INV_RANGE = (1, 100)
|
||||
VISIBLE = (True, False)
|
||||
DISTANCE_RANGE = (3, 7)
|
||||
DISTANCE_FACTOR = 0.2
|
||||
COUNT = (1, 2, 3)
|
||||
|
||||
def generate(self, count=1000):
|
||||
full_data = []
|
||||
self.process(count, full_data)
|
||||
|
||||
self.write_data_to_file(full_data)
|
||||
return full_data
|
||||
|
||||
def process(self, count, full_data):
|
||||
for i in range(count):
|
||||
# if i % 10000 == 0:
|
||||
# print(i)
|
||||
package = {}
|
||||
|
||||
# Create resource data for each resource type.
|
||||
for resource in ResourceType:
|
||||
package[resource] = self.create_resource_data()
|
||||
|
||||
# Get the resource with highest result among all generated resource types.
|
||||
best_resource = self.get_best_resource(package)
|
||||
|
||||
# Unpack packaged resources.
|
||||
(food, water, wood) = (
|
||||
package[ResourceType.FOOD], package[ResourceType.WATER], package[ResourceType.WOOD])
|
||||
|
||||
# Create dictionary filled with data.
|
||||
data = {"food_inv": food[0], 'food_visible': str(food[1]), 'food_distance': food[2],
|
||||
'food_count': food[3], 'food_result': food[4],
|
||||
'water_inv': water[0], 'water_visible': str(water[1]), 'water_distance': water[2],
|
||||
'water_count': water[3], 'water_result': water[4],
|
||||
'wood_inv': wood[0], 'wood_visible': str(wood[1]), 'wood_distance': wood[2],
|
||||
'wood_count': wood[3], 'wood_result': wood[4],
|
||||
'result': best_resource.name.lower()}
|
||||
full_data.append(data)
|
||||
|
||||
@staticmethod
|
||||
def write_data_to_file(full_data):
|
||||
print("Writing to file...")
|
||||
# Open the target file to which the data will be saved and write all the data to it.
|
||||
with open('tree_data.json', 'w') as f:
|
||||
for data in full_data:
|
||||
data_str = str(data).replace("'", '"').replace('"False"', 'false').replace('"True"', 'true')
|
||||
f.write(data_str)
|
||||
f.write('\n')
|
||||
print("Success!")
|
||||
|
||||
def create_resource_data(self):
|
||||
is_visible = random.choice(self.VISIBLE)
|
||||
inventory = random.randint(min(self.INV_RANGE), max(self.INV_RANGE))
|
||||
|
||||
if is_visible:
|
||||
cnt = random.choice(self.COUNT)
|
||||
distance = random.randint(min(self.DISTANCE_RANGE), max(self.DISTANCE_RANGE))
|
||||
else:
|
||||
cnt = 0
|
||||
distance = 0
|
||||
|
||||
# Equation determining the results processed by decision tree.
|
||||
result = (self.INV_RANGE[1] / inventory) * (1 * cnt if is_visible else 0.9) + (
|
||||
max(self.DISTANCE_RANGE) / distance if is_visible else 0.5) * self.DISTANCE_FACTOR
|
||||
|
||||
return [inventory, is_visible, distance, cnt, result]
|
||||
|
||||
@staticmethod
|
||||
def get_best_resource(package: Dict) -> ResourceType:
|
||||
best_resource = None
|
||||
for resource, data in package.items():
|
||||
if best_resource is None or data[:-1] < package[best_resource][:-1]:
|
||||
best_resource = resource
|
||||
return best_resource
|
||||
|
||||
@staticmethod
|
||||
def print_data(full_data):
|
||||
for data in full_data:
|
||||
print(TreeDataGenerator.format_words(["Data", "Apple", "Water", "Wood"]))
|
||||
print(TreeDataGenerator.format_words(["Inventory", data["food_inv"], data["water_inv"], data["wood_inv"]]))
|
||||
print(TreeDataGenerator.format_words(
|
||||
["Visible", data["food_visible"], data["water_visible"], data["wood_visible"]]))
|
||||
print(TreeDataGenerator.format_words(
|
||||
["Distance", data["food_distance"], data["water_distance"], data["wood_distance"]]))
|
||||
print(
|
||||
TreeDataGenerator.format_words(["Count", data["food_count"], data["water_count"], data["wood_count"]]))
|
||||
print(TreeDataGenerator.format_words(
|
||||
["Result", round(data["food_result"], 3), round(data["water_result"], 3),
|
||||
round(data["wood_result"], 3)]))
|
||||
print(f'Best resource: {data["result"]}')
|
||||
print('--------------------------------------------------------------')
|
||||
|
||||
@staticmethod
|
||||
def format_words(words):
|
||||
return '{:>12} {:>12} {:>12} {:>12}'.format(words[0], words[1], words[2], words[3])
|
||||
|
||||
|
||||
# Train tree
|
||||
generator = TreeDataGenerator()
|
||||
data = generator.generate(50000)
|
||||
generator.print_data(data)
|
||||
tree = DecisionTree()
|
||||
tree.build(1000)
|
||||
tree.plot_tree()
|
||||
tree.save_model('classifier.joblib', 'vectorizer.joblib')
|
||||
# ----------------------------------------------------------- #
|
||||
# Use trained tree
|
||||
# tree = DecisionTree()
|
||||
# tree.load_model('classifier.joblib', 'vectorizer.joblib')
|
||||
#
|
||||
# answ = tree.predict_answer({'food_inv': 40, 'water_inv': 10, 'wood_inv': 20,
|
||||
# 'food_distance': 2, 'water_distance': -1, 'wood_distance': 4,
|
||||
# 'food_visible': True, 'water_visible': False, 'wood_visible': True,
|
||||
# 'food_count': 1, 'water_count': 1, 'wood_count': 1})
|
||||
# print(answ)
|
BIN
survival/ai/decision_tree/decistion_tree.png
Normal file
BIN
survival/ai/decision_tree/decistion_tree.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 722 KiB |
50000
survival/ai/decision_tree/tree_data.json
Normal file
50000
survival/ai/decision_tree/tree_data.json
Normal file
File diff suppressed because it is too large
Load Diff
BIN
survival/ai/decision_tree/vectorizer.joblib
Normal file
BIN
survival/ai/decision_tree/vectorizer.joblib
Normal file
Binary file not shown.
84
survival/ai/genetic_algorithm.py
Normal file
84
survival/ai/genetic_algorithm.py
Normal file
@ -0,0 +1,84 @@
|
||||
import sys
|
||||
|
||||
from survival.ai.model import LinearQNetwork
|
||||
from survival.ai.optimizer import Optimizer
|
||||
|
||||
|
||||
class GeneticAlgorithm:
|
||||
GAMES_PER_NETWORK = 40
|
||||
PLOTS_COUNTER = 0
|
||||
CURRENT_GENERATION = 1
|
||||
|
||||
def __init__(self, neural_system, callback):
|
||||
self.callback = callback
|
||||
self.logs_file = open('genetic_logs.txt', 'w')
|
||||
self.original_stdout = sys.stdout
|
||||
sys.stdout = self.logs_file
|
||||
self.neural_system = neural_system
|
||||
self.generations = 20
|
||||
self.population = 10 # Minimum 5 needed to allow breeding
|
||||
self.nn_params = {
|
||||
'neurons': [128, 192, 256, 384, 512],
|
||||
'layers': [0, 1, 2, 3],
|
||||
'activation': ['relu', 'elu', 'tanh'],
|
||||
'ratio': [0.0007, 0.0009, 0.0011, 0.0013, 0.0015],
|
||||
'optimizer': ['RMSprop', 'Adam', 'SGD', 'Adagrad', 'Adadelta'],
|
||||
}
|
||||
self.optimizer = Optimizer(self.nn_params)
|
||||
self.networks: list[LinearQNetwork] = self.optimizer.create_population(self.population)
|
||||
self.finished = False
|
||||
self.trained_counter = 0
|
||||
self.iterations = 0
|
||||
self.trained_generations = 0
|
||||
print('Started generation 1...')
|
||||
self.change_network(self.networks[0])
|
||||
|
||||
def train(self):
|
||||
if self.iterations < GeneticAlgorithm.GAMES_PER_NETWORK - 1:
|
||||
self.iterations += 1
|
||||
return
|
||||
self.iterations = 0
|
||||
print(f'Network score: {self.optimizer.fitness(self.networks[self.trained_counter])}')
|
||||
self.trained_counter += 1
|
||||
|
||||
# If all networks in current population were trained
|
||||
if self.trained_counter >= self.population:
|
||||
# Get average score in current population
|
||||
avg_score = self.calculate_average_score(self.networks)
|
||||
print(f'Average population score: {avg_score}.')
|
||||
|
||||
results_file = open('genetic_results.txt', 'w')
|
||||
for network in self.networks:
|
||||
results_file.write(
|
||||
f'Network {network.id} params {network.network_params}. Avg score = {sum(network.scores) / len(network.scores)}\n')
|
||||
results_file.close()
|
||||
if self.trained_generations >= self.generations - 1:
|
||||
# Sort the final population
|
||||
self.networks = sorted(self.networks, key=lambda x: sum(x.scores) / len(x.scores), reverse=True)
|
||||
self.finished = True
|
||||
self.logs_file.close()
|
||||
sys.stdout = self.original_stdout
|
||||
self.callback()
|
||||
return
|
||||
|
||||
self.trained_generations += 1
|
||||
GeneticAlgorithm.CURRENT_GENERATION = self.trained_generations + 1
|
||||
print(f'Started generation {GeneticAlgorithm.CURRENT_GENERATION}...')
|
||||
self.networks = self.optimizer.evolve(self.networks)
|
||||
self.trained_counter = 0
|
||||
self.change_network(self.networks[self.trained_counter])
|
||||
|
||||
def calculate_average_score(self, networks):
|
||||
sums = 0
|
||||
lengths = 0
|
||||
for network in networks:
|
||||
sums += self.optimizer.fitness(network)
|
||||
lengths += len(network.scores)
|
||||
return sums / lengths
|
||||
|
||||
def change_network(self, net):
|
||||
GeneticAlgorithm.PLOTS_COUNTER += 1
|
||||
print(f"Changed network to {GeneticAlgorithm.PLOTS_COUNTER} {net.network_params}")
|
||||
self.logs_file.flush()
|
||||
net.id = GeneticAlgorithm.PLOTS_COUNTER
|
||||
self.neural_system.load_model(net)
|
@ -2,9 +2,13 @@ from enum import Enum
|
||||
from queue import PriorityQueue
|
||||
from typing import Tuple, List
|
||||
|
||||
from survival import GameMap
|
||||
from survival.components.direction_component import DirectionChangeComponent
|
||||
from survival.components.moving_component import MovingComponent
|
||||
from survival.components.position_component import PositionComponent
|
||||
from survival.enums import Direction
|
||||
from survival.components.resource_component import ResourceComponent
|
||||
from survival.game.enums import Direction
|
||||
from survival.esper import World
|
||||
from survival.systems.consumption_system import ConsumeComponent
|
||||
|
||||
|
||||
class Action(Enum):
|
||||
@ -12,6 +16,35 @@ class Action(Enum):
|
||||
ROTATE_RIGHT = 1
|
||||
MOVE = 2
|
||||
|
||||
@staticmethod
|
||||
def from_array(action):
|
||||
if action[0] == 1:
|
||||
return Action.MOVE
|
||||
if action[1] == 1:
|
||||
return Action.ROTATE_LEFT
|
||||
if action[2] == 1:
|
||||
return Action.ROTATE_RIGHT
|
||||
raise Exception("Unknown action.")
|
||||
|
||||
@staticmethod
|
||||
def perform(world, entity, action):
|
||||
if world.has_component(entity, MovingComponent):
|
||||
raise Exception(f"Entity was already moving. Could not perform action: {action}")
|
||||
if world.has_component(entity, DirectionChangeComponent):
|
||||
raise Exception(f"Entity was already rotating. Could not perform action: {action}")
|
||||
|
||||
if action == Action.ROTATE_LEFT:
|
||||
world.add_component(entity, DirectionChangeComponent(
|
||||
Direction.rotate_left(world.component_for_entity(entity, PositionComponent).direction)))
|
||||
world.add_component(entity, ConsumeComponent(0.2))
|
||||
elif action == Action.ROTATE_RIGHT:
|
||||
world.add_component(entity, DirectionChangeComponent(
|
||||
Direction.rotate_right(world.component_for_entity(entity, PositionComponent).direction)))
|
||||
world.add_component(entity, ConsumeComponent(0.2))
|
||||
else:
|
||||
world.add_component(entity, MovingComponent())
|
||||
return action
|
||||
|
||||
|
||||
class State:
|
||||
def __init__(self, position: Tuple[int, int], direction: Direction):
|
||||
@ -38,7 +71,7 @@ def get_moved_position(position: Tuple[int, int], direction: Direction):
|
||||
return position[0] + vector[0], position[1] + vector[1]
|
||||
|
||||
|
||||
def get_states(state: State, game_map: GameMap) -> List[Tuple[Action, State, int]]:
|
||||
def get_states(state: State, game_map, world: World) -> List[Tuple[Action, State, int]]:
|
||||
states = list()
|
||||
|
||||
states.append((Action.ROTATE_LEFT, State(state.position, state.direction.rotate_left(state.direction)), 1))
|
||||
@ -47,28 +80,34 @@ def get_states(state: State, game_map: GameMap) -> List[Tuple[Action, State, int
|
||||
target_position = get_moved_position(state.position, state.direction)
|
||||
if not game_map.is_colliding(target_position):
|
||||
states.append((Action.MOVE, State(target_position, state.direction), game_map.get_cost(target_position)))
|
||||
elif game_map.get_entity(target_position) is not None:
|
||||
ent = game_map.get_entity(target_position)
|
||||
if world.has_component(ent, ResourceComponent):
|
||||
states.append((Action.MOVE, State(target_position, state.direction), 3))
|
||||
|
||||
return states
|
||||
|
||||
|
||||
def build_path(node: Node):
|
||||
cost = 0
|
||||
actions = [node.action]
|
||||
parent = node.parent
|
||||
|
||||
while parent is not None:
|
||||
if parent.action is not None:
|
||||
actions.append(parent.action)
|
||||
cost += parent.cost
|
||||
parent = parent.parent
|
||||
|
||||
actions.reverse()
|
||||
return actions
|
||||
return actions, cost
|
||||
|
||||
|
||||
def heuristic(new_node: Node, goal: Tuple[int, int]):
|
||||
return abs(new_node.state.position[0] - goal[0]) + abs(new_node.state.position[1] - goal[1])
|
||||
|
||||
|
||||
def graph_search(game_map: GameMap, start: PositionComponent, goal: tuple):
|
||||
def graph_search(game_map, start: PositionComponent, goal: tuple, world: World):
|
||||
fringe = PriorityQueue()
|
||||
explored = list()
|
||||
|
||||
@ -82,7 +121,7 @@ def graph_search(game_map: GameMap, start: PositionComponent, goal: tuple):
|
||||
while True:
|
||||
# No solutions found
|
||||
if fringe.empty():
|
||||
return []
|
||||
return [], 0
|
||||
|
||||
node = fringe.get()
|
||||
node_priority = node[0]
|
||||
@ -97,7 +136,7 @@ def graph_search(game_map: GameMap, start: PositionComponent, goal: tuple):
|
||||
explored_states.add((tuple(node.state.position), node.state.direction))
|
||||
|
||||
# Get all possible states
|
||||
for state in get_states(node.state, game_map):
|
||||
for state in get_states(node.state, game_map, world):
|
||||
sub_state = (tuple(state[1].position), state[1].direction)
|
||||
new_node = Node(state=state[1],
|
||||
parent=node,
|
120
survival/ai/learning_utils.py
Normal file
120
survival/ai/learning_utils.py
Normal file
@ -0,0 +1,120 @@
|
||||
import numpy as np
|
||||
from IPython import display
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
from survival.settings import MUTATE_NETWORKS
|
||||
from survival.ai.genetic_algorithm import GeneticAlgorithm
|
||||
from survival.components.learning_component import LearningComponent
|
||||
from survival.components.position_component import PositionComponent
|
||||
from survival.game.enums import Direction
|
||||
from survival.ai.graph_search import Action
|
||||
|
||||
|
||||
class LearningUtils:
|
||||
def __init__(self):
|
||||
self.plot_scores = []
|
||||
self.plot_mean_scores = []
|
||||
self.total_score = 0
|
||||
self.last_actions: [Action, [int, int]] = []
|
||||
self.plots = 0
|
||||
|
||||
def add_scores(self, learning: LearningComponent, games_count: int):
|
||||
self.plot_scores.append(learning.score)
|
||||
self.total_score += learning.score
|
||||
mean_score = self.total_score / games_count
|
||||
self.plot_mean_scores.append(mean_score)
|
||||
|
||||
def plot(self):
|
||||
# display.clear_output(wait=True)
|
||||
# display.display(plt.gcf())
|
||||
plt.clf()
|
||||
plt.title('Results')
|
||||
plt.xlabel('Number of Games')
|
||||
plt.ylabel('Score')
|
||||
plt.plot(self.plot_scores)
|
||||
plt.plot(self.plot_mean_scores)
|
||||
plt.ylim(ymin=0)
|
||||
plt.text(len(self.plot_scores) - 1, self.plot_scores[-1], str(self.plot_scores[-1]))
|
||||
plt.text(len(self.plot_mean_scores) - 1, self.plot_mean_scores[-1], str(self.plot_mean_scores[-1]))
|
||||
self.plots += 1
|
||||
if MUTATE_NETWORKS:
|
||||
plt.savefig(f'model/plots/{GeneticAlgorithm.PLOTS_COUNTER}_{self.plots}.png')
|
||||
else:
|
||||
plt.savefig(f'model/plots/{self.plots}.png')
|
||||
plt.show(block=False)
|
||||
# plt.pause(.1)
|
||||
|
||||
def append_action(self, action: Action, pos: PositionComponent):
|
||||
self.last_actions.append([action, pos.grid_position])
|
||||
|
||||
def check_last_actions(self, learning):
|
||||
"""
|
||||
Checks if all the last five actions were repeated and imposes the potential penalty.
|
||||
:param learning:
|
||||
"""
|
||||
if len(self.last_actions) > 5:
|
||||
self.last_actions.pop(0)
|
||||
|
||||
last_action: [Action, [int, int]] = self.last_actions[0]
|
||||
last_grid_pos: [int, int] = last_action[1]
|
||||
|
||||
rotations = 0
|
||||
collisions = 0
|
||||
for action in self.last_actions:
|
||||
if action != Action.MOVE:
|
||||
rotations += 1
|
||||
else:
|
||||
current_grid_pos = action[1]
|
||||
if current_grid_pos[0] == last_grid_pos[0] and current_grid_pos[1] == last_grid_pos[1]:
|
||||
collisions += 1
|
||||
|
||||
if rotations > 4 or collisions > 4:
|
||||
learning.reward -= 2
|
||||
|
||||
|
||||
def get_state(system, player, resource):
|
||||
pos: PositionComponent = system.world.component_for_entity(player, PositionComponent)
|
||||
if resource is None or resource[0] is None:
|
||||
res_l = False
|
||||
res_r = False
|
||||
res_u = False
|
||||
res_d = False
|
||||
else:
|
||||
resource_pos: PositionComponent = system.world.component_for_entity(resource[0], PositionComponent)
|
||||
res_l = resource_pos.grid_position[0] < pos.grid_position[0]
|
||||
res_r = resource_pos.grid_position[0] > pos.grid_position[0]
|
||||
res_u = resource_pos.grid_position[1] < pos.grid_position[1]
|
||||
res_d = resource_pos.grid_position[1] > pos.grid_position[1]
|
||||
|
||||
dir_l = pos.direction == Direction.LEFT
|
||||
dir_r = pos.direction == Direction.RIGHT
|
||||
dir_u = pos.direction == Direction.UP
|
||||
dir_d = pos.direction == Direction.DOWN
|
||||
|
||||
pos_l = [pos.grid_position[0] - 1, pos.grid_position[1]]
|
||||
pos_r = [pos.grid_position[0] + 1, pos.grid_position[1]]
|
||||
pos_u = [pos.grid_position[0], pos.grid_position[1] - 1]
|
||||
pos_d = [pos.grid_position[0], pos.grid_position[1] + 1]
|
||||
col_l = system.game_map.in_bounds(
|
||||
pos_l) # self.game_map.is_colliding(pos_l) and self.game_map.get_entity(pos_l) is None
|
||||
col_r = system.game_map.in_bounds(
|
||||
pos_r) # self.game_map.is_colliding(pos_r) and self.game_map.get_entity(pos_r) is None
|
||||
col_u = system.game_map.in_bounds(
|
||||
pos_u) # self.game_map.is_colliding(pos_u) and self.game_map.get_entity(pos_u) is None
|
||||
col_d = system.game_map.in_bounds(
|
||||
pos_d) # self.game_map.is_colliding(pos_d) and self.game_map.get_entity(pos_d) is None
|
||||
|
||||
state = [
|
||||
# Collision ahead
|
||||
(dir_r and col_r) or (dir_l and col_l) or (dir_u and col_u) or (dir_d and col_d),
|
||||
# Collision on the right
|
||||
(dir_u and col_r) or (dir_r and col_d) or (dir_d and col_l) or (dir_l and col_u),
|
||||
# Collision on the left
|
||||
(dir_u and col_l) or (dir_l and col_d) or (dir_d and col_r) or (dir_r and col_u),
|
||||
# Movement direction
|
||||
dir_l, dir_r, dir_u, dir_d,
|
||||
# Resource location
|
||||
res_l, res_r, res_u, res_d
|
||||
]
|
||||
|
||||
return np.array(state, dtype=int)
|
110
survival/ai/model.py
Normal file
110
survival/ai/model.py
Normal file
@ -0,0 +1,110 @@
|
||||
import os
|
||||
import random
|
||||
|
||||
import torch
|
||||
from torch import nn, optim
|
||||
import torch.nn.functional as functional
|
||||
|
||||
|
||||
class LinearQNetwork(nn.Module):
|
||||
TORCH_ACTiVATIONS = 'tanh'
|
||||
|
||||
def __init__(self, nn_params, input_size, output_size, randomize=True, params=None):
|
||||
super().__init__()
|
||||
self.id = 0
|
||||
if params is None:
|
||||
params = {}
|
||||
self.params_choice = nn_params
|
||||
self.scores = []
|
||||
self.network_params = params
|
||||
if randomize:
|
||||
self.randomize()
|
||||
self.layers = nn.ModuleList()
|
||||
if self.network_params['layers'] == 0:
|
||||
self.layers.append(nn.Linear(input_size, output_size))
|
||||
else:
|
||||
self.layers.append(nn.Linear(input_size, self.network_params['neurons']))
|
||||
|
||||
for i in range(self.network_params['layers'] - 1):
|
||||
self.layers.append(nn.Linear(self.network_params['neurons'], self.network_params['neurons']))
|
||||
if self.network_params['layers'] > 0:
|
||||
self.ending_linear = nn.Linear(self.network_params['neurons'], output_size)
|
||||
self.layers.append(self.ending_linear)
|
||||
|
||||
if self.network_params['activation'] in self.TORCH_ACTiVATIONS:
|
||||
self.forward_func = getattr(torch, self.network_params['activation'])
|
||||
else:
|
||||
self.forward_func = getattr(functional, self.network_params['activation'])
|
||||
|
||||
def randomize(self):
|
||||
"""
|
||||
Sets random parameters for network.
|
||||
"""
|
||||
for key in self.params_choice:
|
||||
self.network_params[key] = random.choice(self.params_choice[key])
|
||||
|
||||
def forward(self, x):
|
||||
for i in range(len(self.layers) - 1):
|
||||
x = self.forward_func(self.layers[i](x))
|
||||
x = self.layers[-1](x)
|
||||
return x
|
||||
|
||||
def save(self, file_name='model.pth'):
|
||||
model_directory = 'model'
|
||||
if not os.path.exists(model_directory):
|
||||
os.makedirs(model_directory)
|
||||
|
||||
file_path = os.path.join(model_directory, file_name)
|
||||
torch.save(self.state_dict(), file_path)
|
||||
|
||||
@staticmethod
|
||||
def load(params, input_size, output_size, file_name='model.pth'):
|
||||
model_directory = 'model'
|
||||
file_path = os.path.join(model_directory, file_name)
|
||||
if os.path.isfile(file_path):
|
||||
model = LinearQNetwork(params, input_size, output_size, True)
|
||||
model.load_state_dict(torch.load(file_path))
|
||||
model.eval()
|
||||
return model
|
||||
raise Exception(f'Could not find file {file_path}.')
|
||||
|
||||
|
||||
class QTrainer:
|
||||
def __init__(self, model, lr, gamma, optimizer):
|
||||
self.model = model
|
||||
self.lr = lr
|
||||
self.gamma = gamma
|
||||
self.optimizer = getattr(optim, optimizer)(model.parameters(), lr=self.lr)
|
||||
# self.optimizer = optim.Adam(model.parameters(), lr=self.lr)
|
||||
self.criterion = nn.MSELoss() # Mean squared error
|
||||
|
||||
def train_step(self, state, action, reward, next_state, done):
|
||||
state = torch.tensor(state, dtype=torch.float)
|
||||
next_state = torch.tensor(next_state, dtype=torch.float)
|
||||
action = torch.tensor(action, dtype=torch.long)
|
||||
reward = torch.tensor(reward, dtype=torch.float)
|
||||
|
||||
if len(state.shape) == 1:
|
||||
# reshape the state to make its values an (n, x) tuple
|
||||
state = torch.unsqueeze(state, 0)
|
||||
next_state = torch.unsqueeze(next_state, 0)
|
||||
action = torch.unsqueeze(action, 0)
|
||||
reward = torch.unsqueeze(reward, 0)
|
||||
done = (done,)
|
||||
|
||||
# Prediction based on simplified Bellman's equation
|
||||
# Predict Q values for current state
|
||||
prediction = self.model(state)
|
||||
target = prediction.clone()
|
||||
for idx in range(len(done)):
|
||||
Q = reward[idx]
|
||||
if not done[idx]:
|
||||
Q = reward[idx] + self.gamma * torch.max(self.model(next_state[idx]))
|
||||
# set the target of the maximum value of the action to Q
|
||||
target[idx][torch.argmax(action).item()] = Q
|
||||
# Apply the loss function
|
||||
self.optimizer.zero_grad()
|
||||
loss = self.criterion(target, prediction)
|
||||
loss.backward()
|
||||
|
||||
self.optimizer.step()
|
144
survival/ai/optimizer.py
Normal file
144
survival/ai/optimizer.py
Normal file
@ -0,0 +1,144 @@
|
||||
from functools import reduce
|
||||
from operator import add
|
||||
import random
|
||||
from typing import List
|
||||
|
||||
from survival.ai.model import LinearQNetwork
|
||||
from survival.settings import NEURAL_INPUT_SIZE, NEURAL_OUTPUT_SIZE
|
||||
|
||||
|
||||
class Optimizer:
|
||||
def __init__(self, params, retain=0.4,
|
||||
random_select=0.1, mutation_chance=0.2):
|
||||
self.mutation_chance = mutation_chance
|
||||
self.random_select = random_select
|
||||
self.retain = retain
|
||||
self.nn_params = params
|
||||
|
||||
def create_population(self, count: int):
|
||||
"""
|
||||
Creates 'count' networks from random parameters.
|
||||
:param count:
|
||||
:return:
|
||||
"""
|
||||
pop = []
|
||||
for _ in range(0, count):
|
||||
# Create a random network.
|
||||
network = LinearQNetwork(self.nn_params, NEURAL_INPUT_SIZE, NEURAL_OUTPUT_SIZE)
|
||||
# Add network to the population.
|
||||
pop.append(network)
|
||||
|
||||
return pop
|
||||
|
||||
@staticmethod
|
||||
def fitness(network: LinearQNetwork):
|
||||
return sum(network.scores) / len(network.scores)
|
||||
|
||||
def grade(self, pop: List[LinearQNetwork]) -> float:
|
||||
"""
|
||||
Finds average fitness for given population.
|
||||
"""
|
||||
summed = reduce(add, (self.fitness(network) for network in pop))
|
||||
return summed / float((len(pop)))
|
||||
|
||||
def breed(self, parent_one, parent_two):
|
||||
"""
|
||||
Creates a new network from given parents.
|
||||
:param parent_one:
|
||||
:param parent_two:
|
||||
:return:
|
||||
"""
|
||||
children = []
|
||||
for _ in range(2):
|
||||
|
||||
child = {}
|
||||
|
||||
# Loop through the parameters and pick params for the kid.
|
||||
for param in self.nn_params:
|
||||
child[param] = random.choice(
|
||||
[parent_one.network_params[param], parent_two.network_params[param]]
|
||||
)
|
||||
|
||||
# Create new network object.
|
||||
network = LinearQNetwork(self.nn_params, NEURAL_INPUT_SIZE, NEURAL_OUTPUT_SIZE)
|
||||
network.network_params = child
|
||||
|
||||
children.append(network)
|
||||
|
||||
return children
|
||||
|
||||
def mutate(self, network: LinearQNetwork):
|
||||
"""
|
||||
Randomly mutates one parameter of the given network.
|
||||
:param network:
|
||||
:return:
|
||||
"""
|
||||
mutation = random.choice(list(self.nn_params.keys()))
|
||||
|
||||
# Mutate one of the params.
|
||||
network.network_params[mutation] = random.choice(self.nn_params[mutation])
|
||||
|
||||
return network
|
||||
|
||||
def evolve(self, pop):
|
||||
"""
|
||||
Evolves a population of networks.
|
||||
"""
|
||||
# Get scores for each network.
|
||||
scores = [(self.fitness(network), network) for network in pop]
|
||||
|
||||
# Sort the scores.
|
||||
scores = [x[1] for x in sorted(scores, key=lambda x: x[0], reverse=True)]
|
||||
|
||||
# Get the number we want to keep for the next gen.
|
||||
retain_length = int(len(scores) * self.retain)
|
||||
|
||||
# Keep the best networks as parents for next generation.
|
||||
parents = scores[:retain_length]
|
||||
|
||||
# Keep some other networks
|
||||
for network in scores[retain_length:]:
|
||||
if self.random_select > random.random():
|
||||
parents.append(network)
|
||||
|
||||
# Reset kept networks
|
||||
reseted_networks = []
|
||||
for network in parents:
|
||||
net = LinearQNetwork(self.nn_params, NEURAL_INPUT_SIZE, NEURAL_OUTPUT_SIZE)
|
||||
net.network_params = network.network_params
|
||||
reseted_networks.append(net)
|
||||
|
||||
parents = reseted_networks
|
||||
|
||||
# Randomly mutate some of the networks.
|
||||
for parent in parents:
|
||||
if self.mutation_chance > random.random():
|
||||
parent = self.mutate(parent)
|
||||
|
||||
# Determine the number of freed spots for the next generation.
|
||||
parents_length = len(parents)
|
||||
desired_length = len(pop) - parents_length
|
||||
children = []
|
||||
|
||||
# Fill missing spots with new children.
|
||||
while len(children) < desired_length:
|
||||
# Get random parents.
|
||||
p1 = random.randint(0, parents_length - 1)
|
||||
p2 = random.randint(0, parents_length - 1)
|
||||
|
||||
# Ensure they are not the same network.
|
||||
if p1 != p2:
|
||||
p1 = parents[p1]
|
||||
p2 = parents[p2]
|
||||
|
||||
# Breed networks.
|
||||
babies = self.breed(p1, p2)
|
||||
|
||||
# Add children one at a time.
|
||||
for baby in babies:
|
||||
# Don't grow larger than the desired length.
|
||||
if len(children) < desired_length:
|
||||
children.append(baby)
|
||||
|
||||
parents.extend(children)
|
||||
return parents
|
93
survival/ai/test.py
Normal file
93
survival/ai/test.py
Normal file
@ -0,0 +1,93 @@
|
||||
import torch
|
||||
import pygad
|
||||
from pygad.torchga import torchga
|
||||
|
||||
|
||||
def fitness_func(solution, sol_idx):
|
||||
global data_inputs, data_outputs, torch_ga, model, loss_function
|
||||
|
||||
model_weights_dict = torchga.model_weights_as_dict(model=model,
|
||||
weights_vector=solution)
|
||||
|
||||
# Use the current solution as the model parameters.
|
||||
model.load_state_dict(model_weights_dict)
|
||||
|
||||
predictions = model(data_inputs)
|
||||
abs_error = loss_function(predictions, data_outputs).detach().numpy() + 0.00000001
|
||||
|
||||
solution_fitness = 1.0 / abs_error
|
||||
|
||||
return solution_fitness
|
||||
|
||||
def callback_generation(ga_instance):
|
||||
print("Generation = {generation}".format(generation=ga_instance.generations_completed))
|
||||
print("Fitness = {fitness}".format(fitness=ga_instance.best_solution()[1]))
|
||||
|
||||
# Create the PyTorch model.
|
||||
input_layer = torch.nn.Linear(3, 2)
|
||||
relu_layer = torch.nn.ReLU()
|
||||
output_layer = torch.nn.Linear(2, 1)
|
||||
|
||||
model = torch.nn.Sequential(input_layer,
|
||||
relu_layer,
|
||||
output_layer)
|
||||
# print(model)
|
||||
|
||||
# Create an instance of the pygad.torchga.TorchGA class to build the initial population.
|
||||
torch_ga = torchga.TorchGA(model=model,
|
||||
num_solutions=10)
|
||||
|
||||
loss_function = torch.nn.L1Loss()
|
||||
|
||||
# Data inputs
|
||||
data_inputs = torch.tensor([[0.02, 0.1, 0.15],
|
||||
[0.7, 0.6, 0.8],
|
||||
[1.5, 1.2, 1.7],
|
||||
[3.2, 2.9, 3.1]])
|
||||
|
||||
# Data outputs
|
||||
data_outputs = torch.tensor([[0.1],
|
||||
[0.6],
|
||||
[1.3],
|
||||
[2.5]])
|
||||
|
||||
# Prepare the PyGAD parameters. Check the documentation for more information: https://pygad.readthedocs.io/en/latest/README_pygad_ReadTheDocs.html#pygad-ga-class
|
||||
num_generations = 250 # Number of generations.
|
||||
num_parents_mating = 5 # Number of solutions to be selected as parents in the mating pool.
|
||||
initial_population = torch_ga.population_weights # Initial population of network weights
|
||||
parent_selection_type = "sss" # Type of parent selection.
|
||||
crossover_type = "single_point" # Type of the crossover operator.
|
||||
mutation_type = "random" # Type of the mutation operator.
|
||||
mutation_percent_genes = 10 # Percentage of genes to mutate. This parameter has no action if the parameter mutation_num_genes exists.
|
||||
keep_parents = -1 # Number of parents to keep in the next population. -1 means keep all parents and 0 means keep nothing.
|
||||
|
||||
ga_instance = pygad.GA(num_generations=num_generations,
|
||||
num_parents_mating=num_parents_mating,
|
||||
initial_population=initial_population,
|
||||
fitness_func=fitness_func,
|
||||
parent_selection_type=parent_selection_type,
|
||||
crossover_type=crossover_type,
|
||||
mutation_type=mutation_type,
|
||||
mutation_percent_genes=mutation_percent_genes,
|
||||
keep_parents=keep_parents,
|
||||
on_generation=callback_generation)
|
||||
|
||||
ga_instance.run()
|
||||
|
||||
# After the generations complete, some plots are showed that summarize how the outputs/fitness values evolve over generations.
|
||||
ga_instance.plot_result(title="PyGAD & PyTorch - Iteration vs. Fitness", linewidth=4)
|
||||
|
||||
# Returning the details of the best solution.
|
||||
solution, solution_fitness, solution_idx = ga_instance.best_solution()
|
||||
print("Fitness value of the best solution = {solution_fitness}".format(solution_fitness=solution_fitness))
|
||||
print("Index of the best solution : {solution_idx}".format(solution_idx=solution_idx))
|
||||
|
||||
# Fetch the parameters of the best solution.
|
||||
best_solution_weights = torchga.model_weights_as_dict(model=model,
|
||||
weights_vector=solution)
|
||||
model.load_state_dict(best_solution_weights)
|
||||
predictions = model(data_inputs)
|
||||
print("Predictions : \n", predictions.detach().numpy())
|
||||
|
||||
abs_error = loss_function(predictions, data_outputs)
|
||||
print("Absolute Error : ", abs_error.detach().numpy())
|
6
survival/components/consumption_component.py
Normal file
6
survival/components/consumption_component.py
Normal file
@ -0,0 +1,6 @@
|
||||
from survival.generators.resource_type import ResourceType
|
||||
|
||||
|
||||
class ConsumptionComponent:
|
||||
def __init__(self):
|
||||
self.status = {ResourceType.FOOD: 1, ResourceType.WOOD: 1, ResourceType.WATER: 1}
|
@ -1,4 +1,4 @@
|
||||
from survival.enums import Direction
|
||||
from survival.game.enums import Direction
|
||||
|
||||
|
||||
class DirectionChangeComponent:
|
||||
|
@ -1,5 +1,5 @@
|
||||
class InventoryComponent:
|
||||
def __init__(self, maxitems=10):
|
||||
def __init__(self, maxitems=100):
|
||||
self.maxitems = maxitems
|
||||
self.items = {}
|
||||
|
||||
@ -17,5 +17,17 @@ class InventoryComponent:
|
||||
if self.items[item] < 0:
|
||||
self.items[item] = 0
|
||||
|
||||
def count(self, item):
|
||||
return self.items[item]
|
||||
|
||||
def has_item(self, item):
|
||||
return item in self.items and self.items[item] != 0
|
||||
|
||||
def total_items_count(self):
|
||||
total = 0
|
||||
for item, value in self.items.items():
|
||||
total += value
|
||||
return total
|
||||
|
||||
def clear(self):
|
||||
self.items = {}
|
||||
|
32
survival/components/learning_component.py
Normal file
32
survival/components/learning_component.py
Normal file
@ -0,0 +1,32 @@
|
||||
from survival.components.time_component import TimeComponent
|
||||
|
||||
|
||||
class LearningComponent:
|
||||
def __init__(self):
|
||||
self.made_step = False
|
||||
self.old_state = None
|
||||
self.action = None
|
||||
self.resource = None
|
||||
|
||||
self.reward = 0
|
||||
self.done = False
|
||||
self.score = 0
|
||||
self.record = 0
|
||||
|
||||
def load_step(self, old_state, action, resource):
|
||||
self.old_state = old_state
|
||||
self.action = action
|
||||
if resource is None:
|
||||
self.resource = None
|
||||
else:
|
||||
self.resource = resource
|
||||
self.made_step = True
|
||||
|
||||
def reset(self):
|
||||
self.made_step = False
|
||||
self.old_state = None
|
||||
self.action = None
|
||||
self.resource = None
|
||||
|
||||
self.reward = 0
|
||||
self.done = False
|
@ -7,9 +7,9 @@ class OnCollisionComponent:
|
||||
callbacks = []
|
||||
self.callbacks = callbacks
|
||||
|
||||
def callAll(self):
|
||||
def call_all(self):
|
||||
for func in self.callbacks:
|
||||
func()
|
||||
|
||||
def addCallback(self, fn, **kwargs):
|
||||
def add_callback(self, fn, **kwargs):
|
||||
self.callbacks.append(partial(fn, **kwargs))
|
@ -1,4 +1,4 @@
|
||||
from survival.enums import Direction
|
||||
from survival.game.enums import Direction
|
||||
|
||||
|
||||
class PositionComponent:
|
||||
|
@ -1,3 +1,29 @@
|
||||
import random
|
||||
|
||||
from survival.generators.resource_type import ResourceType
|
||||
|
||||
|
||||
class ResourceComponent:
|
||||
def __init__(self, resource_type):
|
||||
self.resource_type = resource_type
|
||||
w, e, t = self.generate_attributes(resource_type)
|
||||
self.weight = w
|
||||
self.eatable = e
|
||||
self.toughness = t
|
||||
|
||||
@staticmethod
|
||||
def generate_attributes(resource_type):
|
||||
if resource_type == ResourceType.WOOD:
|
||||
weight = random.randint(10, 15)
|
||||
eatable = False
|
||||
toughness = random.randint(10, 15)
|
||||
elif resource_type == ResourceType.WATER:
|
||||
weight = random.randint(1, 2)
|
||||
eatable = True
|
||||
toughness = 0
|
||||
else:
|
||||
weight = random.randint(1, 7)
|
||||
eatable = True
|
||||
toughness = random.randint(2, 5)
|
||||
|
||||
return weight, eatable, toughness
|
||||
|
@ -1,4 +1,4 @@
|
||||
from survival.image import Image
|
||||
from survival.game.image import Image
|
||||
|
||||
|
||||
class SpriteComponent:
|
||||
|
@ -1,5 +1,5 @@
|
||||
class TimeComponent:
|
||||
def __init__(self, minute, hour, day, timer):
|
||||
def __init__(self, minute=0, hour=0, day=0, timer=0):
|
||||
self.minute = minute
|
||||
self.hour = hour
|
||||
self.day = day
|
||||
@ -16,5 +16,17 @@ class TimeComponent:
|
||||
self.hour = temp2
|
||||
self.minute = temp
|
||||
|
||||
def total_minutes(self):
|
||||
return self.minute + self.hour * 60 + self.day * 1440
|
||||
|
||||
def __str__(self):
|
||||
return f'Day {self.day}, {self.hour}:{self.minute}'
|
||||
|
||||
def __eq__(self, other):
|
||||
return self.total_minutes() == other.total_minutes()
|
||||
|
||||
def __gt__(self, other):
|
||||
return self.total_minutes() > other.total_minutes()
|
||||
|
||||
def __lt__(self, other):
|
||||
return self.total_minutes() < other.total_minutes()
|
||||
|
34
survival/components/vision_component.py
Normal file
34
survival/components/vision_component.py
Normal file
@ -0,0 +1,34 @@
|
||||
from pygame import Surface
|
||||
|
||||
from survival.settings import AGENT_VISION_RANGE, SCREEN_WIDTH, SCREEN_HEIGHT
|
||||
|
||||
|
||||
class VisionComponent:
|
||||
def __init__(self):
|
||||
self.agent_vision = AGENT_VISION_RANGE * 32 * 2
|
||||
self.width = SCREEN_WIDTH * 2
|
||||
self.height = SCREEN_HEIGHT * 2
|
||||
self.surface_l = Surface(((self.width - self.agent_vision) / 2, self.height))
|
||||
self.surface_r = Surface(((self.width - self.agent_vision) / 2, self.height))
|
||||
self.surface_t = Surface((self.agent_vision, (self.height - self.agent_vision) / 2))
|
||||
self.surface_b = Surface((self.agent_vision, (self.height - self.agent_vision) / 2))
|
||||
self.surface_l.fill((0, 0, 0))
|
||||
self.surface_l.set_alpha(200)
|
||||
self.surface_r.fill((0, 0, 0))
|
||||
self.surface_r.set_alpha(200)
|
||||
self.surface_t.fill((0, 0, 0))
|
||||
self.surface_t.set_alpha(200)
|
||||
self.surface_b.fill((0, 0, 0))
|
||||
self.surface_b.set_alpha(200)
|
||||
self.l_pos = (0, 0)
|
||||
self.r_pos = (0, 0)
|
||||
self.t_pos = (0, 0)
|
||||
self.b_pos = (0, 0)
|
||||
|
||||
def update_positions(self, position: [int, int]):
|
||||
new_position = (position[0] - self.width / 2 + 16, position[1] - self.height / 2 + 16)
|
||||
self.l_pos = new_position
|
||||
self.r_pos = (new_position[0] + (self.width + self.agent_vision) / 2, new_position[1])
|
||||
self.t_pos = (new_position[0] + (self.width - self.agent_vision) / 2, new_position[1])
|
||||
self.b_pos = (new_position[0] + (self.width - self.agent_vision) / 2,
|
||||
new_position[1] + (self.height + self.agent_vision) / 2)
|
@ -28,6 +28,9 @@ class Processor:
|
||||
def process(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def reset(self, *args, **kwargs):
|
||||
pass
|
||||
|
||||
|
||||
class World:
|
||||
"""A World object keeps track of all Entities, Components, and Processors.
|
||||
@ -46,6 +49,14 @@ class World:
|
||||
self.process_times = {}
|
||||
self._process = self._timed_process
|
||||
|
||||
@property
|
||||
def processors(self):
|
||||
return self._processors
|
||||
|
||||
@property
|
||||
def entities(self):
|
||||
return self._entities
|
||||
|
||||
def clear_cache(self) -> None:
|
||||
self.get_component.cache_clear()
|
||||
self.get_components.cache_clear()
|
||||
|
@ -1,4 +1,4 @@
|
||||
from survival.biomes.biome_preset import BiomePreset
|
||||
from survival.game.biomes.biome_preset import BiomePreset
|
||||
|
||||
|
||||
class BiomeData:
|
@ -1,7 +1,7 @@
|
||||
import random
|
||||
from typing import List
|
||||
|
||||
from survival.tile import Tile
|
||||
from survival.game.tile import Tile
|
||||
|
||||
|
||||
class BiomePreset:
|
@ -1,6 +1,6 @@
|
||||
from pygame.rect import Rect
|
||||
|
||||
from survival import SCREEN_WIDTH, SCREEN_HEIGHT
|
||||
from survival.settings import SCREEN_WIDTH, SCREEN_HEIGHT
|
||||
|
||||
|
||||
class Camera:
|
@ -18,7 +18,7 @@ class EntityLayer:
|
||||
def remove_entity(self, pos):
|
||||
self.tiles[pos[1]][pos[0]] = None
|
||||
|
||||
def get_entity(self, pos) -> int:
|
||||
def get_entity(self, pos):
|
||||
return self.tiles[pos[1]][pos[0]]
|
||||
|
||||
def is_colliding(self, pos):
|
82
survival/game/game_map.py
Normal file
82
survival/game/game_map.py
Normal file
@ -0,0 +1,82 @@
|
||||
from survival.components.position_component import PositionComponent
|
||||
from survival.components.resource_component import ResourceComponent
|
||||
from survival.game.entity_layer import EntityLayer
|
||||
from survival.esper import World
|
||||
from survival.ai.graph_search import graph_search
|
||||
from survival.settings import AGENT_VISION_RANGE
|
||||
from survival.game.tile_layer import TileLayer
|
||||
|
||||
|
||||
class GameMap:
|
||||
def __init__(self, width, height):
|
||||
self.width = width
|
||||
self.height = height
|
||||
self.tile_layer = TileLayer(width, height)
|
||||
self.entity_layer = EntityLayer(width, height)
|
||||
|
||||
def draw(self, camera):
|
||||
visible_area = camera.get_visible_area()
|
||||
self.tile_layer.draw(camera, visible_area)
|
||||
|
||||
def add_entity(self, entity, pos):
|
||||
self.entity_layer.add_entity(entity, pos.grid_position)
|
||||
|
||||
def move_entity(self, from_pos, to_pos):
|
||||
self.entity_layer.move_entity(from_pos, to_pos)
|
||||
|
||||
def remove_entity(self, pos):
|
||||
self.entity_layer.remove_entity(pos)
|
||||
|
||||
def get_entity(self, pos) -> int:
|
||||
if not self.in_bounds(pos):
|
||||
return None
|
||||
return self.entity_layer.get_entity(pos)
|
||||
|
||||
def is_colliding(self, pos):
|
||||
return not self.in_bounds(pos) or self.entity_layer.is_colliding(pos)
|
||||
|
||||
def in_bounds(self, pos):
|
||||
return 0 <= pos[0] < self.width and 0 <= pos[1] < self.height
|
||||
|
||||
def get_cost(self, pos):
|
||||
return self.tile_layer.get_cost(pos)
|
||||
|
||||
def find_nearby_resources(self, world: World, player: int, position: PositionComponent, search_range: int = 5):
|
||||
entity_position = position.grid_position
|
||||
|
||||
x_range = [entity_position[0] - search_range, entity_position[0] + search_range]
|
||||
y_range = [entity_position[1] - search_range, entity_position[1] + search_range]
|
||||
|
||||
# Check if range is not out of map bounds
|
||||
if x_range[0] < 0:
|
||||
x_range[0] = 0
|
||||
if x_range[1] >= self.width:
|
||||
x_range[1] = self.width - 1
|
||||
if y_range[0] < 0:
|
||||
y_range[0] = 0
|
||||
if y_range[1] >= self.height:
|
||||
y_range[1] = self.height - 1
|
||||
|
||||
found_resources = []
|
||||
|
||||
for y in range(y_range[0], y_range[1]):
|
||||
for x in range(x_range[0], x_range[1]):
|
||||
ent = self.get_entity([x, y])
|
||||
if ent == player:
|
||||
continue
|
||||
if ent is not None and world.has_component(ent, ResourceComponent):
|
||||
res_position = world.component_for_entity(ent, PositionComponent).grid_position
|
||||
path, cost = graph_search(self, position, tuple(res_position), world)
|
||||
found_resources.append([ent, path, cost])
|
||||
|
||||
return found_resources
|
||||
|
||||
def find_nearest_resource(self, world: World, player: int, position: PositionComponent):
|
||||
resources = self.find_nearby_resources(world, player, position, AGENT_VISION_RANGE)
|
||||
|
||||
nearest = None
|
||||
for resource in resources:
|
||||
if nearest is None or resource[2] < nearest[2]:
|
||||
nearest = resource
|
||||
|
||||
return nearest
|
@ -4,8 +4,11 @@ import pygame
|
||||
|
||||
|
||||
class Image:
|
||||
def __init__(self, filename, pos=(0, 0), scale=1):
|
||||
self.texture = pygame.image.load(os.path.join('..', 'assets', filename)).convert_alpha()
|
||||
def __init__(self, filename='', pos=(0, 0), scale=1, surface=None):
|
||||
if surface is None:
|
||||
self.texture = pygame.image.load(os.path.join('../', 'assets', filename)).convert_alpha()
|
||||
else:
|
||||
self.texture = surface
|
||||
self.image = self.texture
|
||||
self.origin = (0, 0)
|
||||
self.pos = pos
|
@ -1,6 +1,6 @@
|
||||
from survival.generators.tile_generator import TileGenerator
|
||||
from survival.image import Image
|
||||
from survival.tile import Tile
|
||||
from survival.game.image import Image
|
||||
from survival.game.tile import Tile
|
||||
|
||||
|
||||
class TileLayer:
|
||||
@ -8,7 +8,6 @@ class TileLayer:
|
||||
self.width = width
|
||||
self.height = height
|
||||
self.tiles: list[list[Tile]] = TileGenerator.generate_biome_tiles(width, height)
|
||||
# self.tiles: list[list[Tile]] = TileGenerator.generate_random_tiles(width, height)
|
||||
self.image = Image('atlas.png')
|
||||
|
||||
def draw(self, camera, visible_area):
|
@ -1,19 +1,20 @@
|
||||
import pygame.font
|
||||
|
||||
from survival import settings
|
||||
from survival.ai.genetic_algorithm import GeneticAlgorithm
|
||||
from survival.settings import MUTATE_NETWORKS, SCREEN_HEIGHT, SCREEN_WIDTH
|
||||
from survival.components.inventory_component import InventoryComponent
|
||||
from survival.generators.resource_generator import ResourceType
|
||||
from survival.image import Image
|
||||
from survival.generators.resource_type import ResourceType
|
||||
from survival.game.image import Image
|
||||
|
||||
|
||||
class UserInterface:
|
||||
def __init__(self, window, inventory: InventoryComponent):
|
||||
self.width = settings.SCREEN_WIDTH
|
||||
self.height = settings.SCREEN_HEIGHT
|
||||
def __init__(self, window):
|
||||
self.width = SCREEN_WIDTH
|
||||
self.height = SCREEN_HEIGHT
|
||||
self.window = window
|
||||
self.pos = (self.width - 240, 50)
|
||||
self.scale = 2
|
||||
self.inventory = inventory
|
||||
self.inventory: InventoryComponent = None
|
||||
self.images = {
|
||||
ResourceType.FOOD: Image('apple.png', self.pos, self.scale),
|
||||
ResourceType.WATER: Image('water.png', self.pos, self.scale),
|
||||
@ -25,6 +26,11 @@ class UserInterface:
|
||||
i += 1
|
||||
self.slot_image = Image('ui.png', self.pos, scale=2)
|
||||
self.font = pygame.font.SysFont('Comic Sans MS', 20)
|
||||
self.initialized = False
|
||||
|
||||
def load_inventory(self, inventory: InventoryComponent):
|
||||
self.inventory = inventory
|
||||
self.initialized = True
|
||||
|
||||
def update(self):
|
||||
pass
|
||||
@ -39,4 +45,3 @@ class UserInterface:
|
||||
|
||||
textsurface = self.font.render(str(items_count), False, (255, 255, 255))
|
||||
self.window.blit(textsurface, (image.pos[0] + 48, image.pos[1] + 36))
|
||||
|
@ -1,32 +0,0 @@
|
||||
from survival.entity_layer import EntityLayer
|
||||
from survival.tile_layer import TileLayer
|
||||
|
||||
|
||||
class GameMap:
|
||||
def __init__(self, width, height):
|
||||
self.width = width
|
||||
self.height = height
|
||||
self.tile_layer = TileLayer(width, height)
|
||||
self.entity_layer = EntityLayer(width, height)
|
||||
|
||||
def draw(self, camera):
|
||||
visible_area = camera.get_visible_area()
|
||||
self.tile_layer.draw(camera, visible_area)
|
||||
|
||||
def add_entity(self, entity, pos):
|
||||
self.entity_layer.add_entity(entity, pos.grid_position)
|
||||
|
||||
def move_entity(self, from_pos, to_pos):
|
||||
self.entity_layer.move_entity(from_pos, to_pos)
|
||||
|
||||
def remove_entity(self, pos):
|
||||
self.entity_layer.remove_entity(pos)
|
||||
|
||||
def get_entity(self, pos) -> int:
|
||||
return self.entity_layer.get_entity(pos)
|
||||
|
||||
def is_colliding(self, pos):
|
||||
return pos[0] < 0 or pos[0] >= self.width or pos[1] < 0 or pos[1] >= self.height or self.entity_layer.is_colliding(pos)
|
||||
|
||||
def get_cost(self, pos):
|
||||
return self.tile_layer.get_cost(pos)
|
@ -1,29 +1,41 @@
|
||||
from survival.components.OnCollisionComponent import OnCollisionComponent
|
||||
from survival.components.on_collision_component import OnCollisionComponent
|
||||
from survival.components.camera_target_component import CameraTargetComponent
|
||||
from survival.components.consumption_component import ConsumptionComponent
|
||||
from survival.components.input_component import InputComponent
|
||||
from survival.components.inventory_component import InventoryComponent
|
||||
from survival.components.learning_component import LearningComponent
|
||||
from survival.components.movement_component import MovementComponent
|
||||
from survival.components.position_component import PositionComponent
|
||||
from survival.components.sprite_component import SpriteComponent
|
||||
from survival.components.time_component import TimeComponent
|
||||
from survival.components.vision_component import VisionComponent
|
||||
from survival.generators.resource_type import ResourceType
|
||||
from survival.settings import PLAYER_START_POSITION, STARTING_RESOURCES_AMOUNT
|
||||
|
||||
|
||||
class PlayerGenerator:
|
||||
|
||||
def create_player(self, world, game_map):
|
||||
player = world.create_entity()
|
||||
pos = PositionComponent([0, 0], [0, 0])
|
||||
pos = PositionComponent([PLAYER_START_POSITION[0] * 32, PLAYER_START_POSITION[1] * 32],
|
||||
PLAYER_START_POSITION)
|
||||
world.add_component(player, pos)
|
||||
world.add_component(player, MovementComponent())
|
||||
world.add_component(player, InputComponent())
|
||||
world.add_component(player, OnCollisionComponent())
|
||||
world.add_component(player, InventoryComponent())
|
||||
inv = InventoryComponent()
|
||||
for resource in ResourceType:
|
||||
inv.add_item(resource, STARTING_RESOURCES_AMOUNT)
|
||||
world.add_component(player, ConsumptionComponent())
|
||||
world.add_component(player, inv)
|
||||
camera_target = CameraTargetComponent(pos)
|
||||
world.add_component(player, camera_target)
|
||||
# world.add_component(player, AutomationComponent())
|
||||
game_map.add_entity(player, pos)
|
||||
sprite = SpriteComponent('stevenson.png')
|
||||
sprite.set_scale(1)
|
||||
world.add_component(player, sprite)
|
||||
world.add_component(player, TimeComponent(0, 0, 0, 0))
|
||||
world.add_component(player, TimeComponent())
|
||||
world.add_component(player, VisionComponent())
|
||||
world.add_component(player, LearningComponent())
|
||||
|
||||
return player
|
||||
|
@ -1,28 +1,26 @@
|
||||
import random
|
||||
|
||||
from enum import Enum
|
||||
from survival import GameMap
|
||||
from survival.components.OnCollisionComponent import OnCollisionComponent
|
||||
from survival.components.on_collision_component import OnCollisionComponent
|
||||
from survival.components.inventory_component import InventoryComponent
|
||||
from survival.components.learning_component import LearningComponent
|
||||
from survival.components.position_component import PositionComponent
|
||||
from survival.components.resource_component import ResourceComponent
|
||||
from survival.components.sprite_component import SpriteComponent
|
||||
from survival.esper import World
|
||||
from survival.settings import RESOURCES_AMOUNT
|
||||
|
||||
|
||||
class ResourceType(Enum):
|
||||
FOOD = 1
|
||||
WATER = 2
|
||||
WOOD = 3
|
||||
from survival.generators.resource_type import ResourceType
|
||||
from survival.settings import RESOURCES_AMOUNT, PLAYER_START_POSITION
|
||||
|
||||
|
||||
class ResourceGenerator:
|
||||
resources_amount = 0
|
||||
|
||||
def __init__(self, world, game_map):
|
||||
self.world = world
|
||||
self.map = game_map
|
||||
|
||||
def generate_resources(self, player: int):
|
||||
ResourceGenerator.resources_amount = RESOURCES_AMOUNT
|
||||
for x in range(RESOURCES_AMOUNT):
|
||||
obj = self.world.create_entity()
|
||||
sprites = {
|
||||
@ -37,7 +35,7 @@ class ResourceGenerator:
|
||||
resource_type = random.choice(list(ResourceType))
|
||||
sprite = SpriteComponent(sprites[resource_type])
|
||||
col = OnCollisionComponent()
|
||||
col.addCallback(self.remove_resource, world=self.world, game_map=self.map, entity=obj, player=player)
|
||||
col.add_callback(self.remove_resource, world=self.world, game_map=self.map, resource_ent=obj, player=player)
|
||||
self.world.add_component(obj, pos)
|
||||
self.world.add_component(obj, sprite)
|
||||
self.world.add_component(obj, col)
|
||||
@ -46,15 +44,25 @@ class ResourceGenerator:
|
||||
|
||||
def get_empty_grid_position(self):
|
||||
free_pos = [random.randrange(self.map.width), random.randrange(self.map.height)]
|
||||
while self.map.is_colliding(free_pos):
|
||||
while self.map.is_colliding(free_pos) or (
|
||||
free_pos[0] == PLAYER_START_POSITION[0] and free_pos[1] == PLAYER_START_POSITION[1]):
|
||||
free_pos = [random.randrange(self.map.width), random.randrange(self.map.height)]
|
||||
return free_pos
|
||||
|
||||
@staticmethod
|
||||
def remove_resource(world: World, game_map: GameMap, entity: int, player: int):
|
||||
pos = world.component_for_entity(entity, PositionComponent)
|
||||
resource = world.component_for_entity(entity, ResourceComponent)
|
||||
def remove_resource(world: World, game_map: GameMap, resource_ent: int, player: int):
|
||||
pos = world.component_for_entity(resource_ent, PositionComponent)
|
||||
resource = world.component_for_entity(resource_ent, ResourceComponent)
|
||||
inventory = world.component_for_entity(player, InventoryComponent)
|
||||
inventory.add_item(resource.resource_type, 1)
|
||||
game_map.remove_entity(pos.grid_position)
|
||||
world.delete_entity(entity, immediate=True)
|
||||
world.delete_entity(resource_ent, immediate=True)
|
||||
if world.has_component(player, LearningComponent):
|
||||
learning = world.component_for_entity(player, LearningComponent)
|
||||
learning.reward += 10
|
||||
learning.score += 1
|
||||
ResourceGenerator.resources_amount -= 1
|
||||
if ResourceGenerator.resources_amount == 0:
|
||||
learning.reward += 50
|
||||
learning.done = True
|
||||
|
||||
|
18
survival/generators/resource_type.py
Normal file
18
survival/generators/resource_type.py
Normal file
@ -0,0 +1,18 @@
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class ResourceType(Enum):
|
||||
FOOD = 1
|
||||
WATER = 2
|
||||
WOOD = 3
|
||||
|
||||
@staticmethod
|
||||
def get_from_string(string):
|
||||
if string == 'food':
|
||||
return ResourceType.FOOD
|
||||
elif string == 'water':
|
||||
return ResourceType.WATER
|
||||
elif string == 'wood':
|
||||
return ResourceType.WOOD
|
||||
else:
|
||||
raise Exception("Unknown resource type")
|
@ -1,10 +1,12 @@
|
||||
import json
|
||||
import random
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
from survival.biomes.biome_data import BiomeData
|
||||
from survival.biomes.biome_preset import BiomePreset
|
||||
from survival.biomes.noise import generate_noise
|
||||
from survival.tile import Tile
|
||||
from survival.game.biomes.biome_data import BiomeData
|
||||
from survival.game.biomes.biome_preset import BiomePreset
|
||||
from survival.game.biomes.noise import generate_noise
|
||||
from survival.game.tile import Tile
|
||||
|
||||
|
||||
class TileGenerator:
|
||||
@ -44,11 +46,25 @@ class TileGenerator:
|
||||
|
||||
@staticmethod
|
||||
def generate_biome_tiles(width: int, height: int):
|
||||
seed = random.randint(0, 9999999)
|
||||
# Use static seed to allow smooth learning of genetic algorithm
|
||||
seed = 1
|
||||
octaves = 10
|
||||
file_name = f'seeds/{seed}.bin'
|
||||
biomes_file = Path(file_name)
|
||||
if biomes_file.is_file():
|
||||
with open(file_name, 'r') as f:
|
||||
data = json.load(f)
|
||||
height_map = data[0]
|
||||
moisture_map = data[1]
|
||||
heat_map = data[2]
|
||||
else:
|
||||
height_map = generate_noise(width, height, octaves, seed)
|
||||
moisture_map = generate_noise(width, height, octaves, seed)
|
||||
heat_map = generate_noise(width, height, octaves, seed)
|
||||
data = [height_map, moisture_map, heat_map]
|
||||
Path('seeds').mkdir(exist_ok=True)
|
||||
with open(file_name, 'w') as f:
|
||||
json.dump(data, f)
|
||||
|
||||
return [[TileGenerator.get_biome(height_map[y][x], moisture_map[y][x], heat_map[y][x]).get_new_tile() for x in
|
||||
range(width)] for y in range(height)]
|
||||
|
@ -1,25 +1,119 @@
|
||||
from survival import esper
|
||||
from pathlib import Path
|
||||
|
||||
from survival import esper, ResourceGenerator, PlayerGenerator
|
||||
from survival.ai.model import LinearQNetwork
|
||||
from survival.components.consumption_component import ConsumptionComponent
|
||||
from survival.components.direction_component import DirectionChangeComponent
|
||||
from survival.components.inventory_component import InventoryComponent
|
||||
from survival.components.learning_component import LearningComponent
|
||||
from survival.components.moving_component import MovingComponent
|
||||
from survival.components.pathfinding_component import PathfindingComponent
|
||||
from survival.components.position_component import PositionComponent
|
||||
from survival.components.resource_component import ResourceComponent
|
||||
from survival.components.time_component import TimeComponent
|
||||
from survival.esper import World
|
||||
from survival.game.camera import Camera
|
||||
from survival.game.game_map import GameMap
|
||||
from survival.generators.resource_type import ResourceType
|
||||
from survival.settings import PLAYER_START_POSITION, STARTING_RESOURCES_AMOUNT, SCREEN_WIDTH, SCREEN_HEIGHT, \
|
||||
MUTATE_NETWORKS, NETWORK_PARAMS, NEURAL_OUTPUT_SIZE, NEURAL_INPUT_SIZE
|
||||
from survival.systems.automation_system import AutomationSystem
|
||||
from survival.systems.camera_system import CameraSystem
|
||||
from survival.systems.collision_system import CollisionSystem
|
||||
from survival.systems.consumption_system import ConsumptionSystem
|
||||
from survival.systems.direction_system import DirectionSystem
|
||||
from survival.systems.draw_system import DrawSystem
|
||||
from survival.systems.input_system import InputSystem
|
||||
from survival.systems.movement_system import MovementSystem
|
||||
from survival.systems.pathfinding_movement_system import PathfindingMovementSystem
|
||||
from survival.systems.neural_system import NeuralSystem
|
||||
from survival.systems.time_system import TimeSystem
|
||||
from survival.systems.vision_system import VisionSystem
|
||||
|
||||
|
||||
class WorldGenerator:
|
||||
def __init__(self, win, callback):
|
||||
self.win = win
|
||||
self.callback = callback
|
||||
self.world: World = esper.World(timed=True)
|
||||
self.game_map: GameMap = GameMap(int(SCREEN_WIDTH / 32) * 2, 2 * int(SCREEN_HEIGHT / 32) + 1)
|
||||
self.camera = Camera(self.game_map.width * 32, self.game_map.height * 32, self.win)
|
||||
self.resource_generator: ResourceGenerator = ResourceGenerator(self.world, self.game_map)
|
||||
self.player: int = -1
|
||||
|
||||
def create_world(self, camera, game_map):
|
||||
world = esper.World()
|
||||
world.add_processor(InputSystem(camera))
|
||||
world.add_processor(CameraSystem(camera))
|
||||
world.add_processor(MovementSystem(game_map), priority=1)
|
||||
world.add_processor(CollisionSystem(game_map), priority=2)
|
||||
world.add_processor(DrawSystem(camera))
|
||||
world.add_processor(TimeSystem())
|
||||
world.add_processor(PathfindingMovementSystem(game_map), priority=3)
|
||||
world.add_processor(DirectionSystem())
|
||||
def create_world(self):
|
||||
self.world.add_processor(InputSystem(self.camera, self.game_map))
|
||||
self.world.add_processor(CameraSystem(self.camera))
|
||||
self.world.add_processor(MovementSystem(self.game_map), priority=20)
|
||||
self.world.add_processor(CollisionSystem(self.game_map), priority=30)
|
||||
self.world.add_processor(NeuralSystem(self.game_map, self.callback), priority=50)
|
||||
if not MUTATE_NETWORKS:
|
||||
model_path = Path("/model/model.pth")
|
||||
if model_path.is_file():
|
||||
self.world.get_processor(NeuralSystem).load_model(
|
||||
LinearQNetwork.load(NETWORK_PARAMS, NEURAL_INPUT_SIZE, NEURAL_OUTPUT_SIZE))
|
||||
else:
|
||||
self.world.get_processor(NeuralSystem).load_model(
|
||||
LinearQNetwork(NETWORK_PARAMS, NEURAL_INPUT_SIZE, NEURAL_OUTPUT_SIZE, False, NETWORK_PARAMS))
|
||||
self.world.add_processor(DrawSystem(self.camera))
|
||||
self.world.add_processor(TimeSystem())
|
||||
self.world.add_processor(AutomationSystem(self.game_map))
|
||||
# self.world.add_processor(PathfindingMovementSystem(self.game_map), priority=40)
|
||||
self.world.add_processor(DirectionSystem())
|
||||
self.world.add_processor(ConsumptionSystem(self.callback))
|
||||
self.world.add_processor(VisionSystem(self.camera))
|
||||
|
||||
return world
|
||||
self.player = PlayerGenerator().create_player(self.world, self.game_map)
|
||||
self.world.get_processor(DrawSystem).initialize_interface(
|
||||
self.world.component_for_entity(self.player, InventoryComponent))
|
||||
|
||||
# BuildingGenerator().create_home(self.world, self.game_map)
|
||||
self.resource_generator.generate_resources(self.player)
|
||||
return self.game_map, self.world, self.camera
|
||||
|
||||
def reset_world(self):
|
||||
for processor in self.world.processors:
|
||||
processor.reset()
|
||||
|
||||
self.reset_player()
|
||||
self.reset_resources()
|
||||
|
||||
def reset_resources(self):
|
||||
for entity in self.world.entities:
|
||||
if self.world.has_component(entity, ResourceComponent):
|
||||
self.game_map.remove_entity(self.world.component_for_entity(entity, PositionComponent).grid_position)
|
||||
self.world.delete_entity(entity)
|
||||
continue
|
||||
self.resource_generator.generate_resources(self.player)
|
||||
|
||||
def reset_player(self):
|
||||
self.world.remove_component(self.player, TimeComponent)
|
||||
self.world.add_component(self.player, TimeComponent())
|
||||
|
||||
inv = self.world.component_for_entity(self.player, InventoryComponent)
|
||||
inv.clear()
|
||||
for resource in ResourceType:
|
||||
inv.add_item(resource, STARTING_RESOURCES_AMOUNT)
|
||||
|
||||
if self.world.has_component(self.player, ConsumptionComponent):
|
||||
self.world.remove_component(self.player, ConsumptionComponent)
|
||||
self.world.add_component(self.player, ConsumptionComponent())
|
||||
|
||||
pos = self.world.component_for_entity(self.player, PositionComponent)
|
||||
old_pos = pos.grid_position
|
||||
|
||||
self.world.remove_component(self.player, PositionComponent)
|
||||
self.world.add_component(self.player,
|
||||
PositionComponent([PLAYER_START_POSITION[0] * 32, PLAYER_START_POSITION[1] * 32],
|
||||
PLAYER_START_POSITION))
|
||||
|
||||
self.game_map.move_entity(old_pos, pos.grid_position)
|
||||
|
||||
if self.world.has_component(self.player, MovingComponent):
|
||||
self.world.remove_component(self.player, MovingComponent)
|
||||
if self.world.has_component(self.player, DirectionChangeComponent):
|
||||
self.world.remove_component(self.player, DirectionChangeComponent)
|
||||
if self.world.has_component(self.player, PathfindingComponent):
|
||||
self.world.remove_component(self.player, PathfindingComponent)
|
||||
if self.world.has_component(self.player, LearningComponent):
|
||||
learning = self.world.component_for_entity(self.player, LearningComponent)
|
||||
learning.reset()
|
||||
|
BIN
survival/model/model204games.pth
Normal file
BIN
survival/model/model204games.pth
Normal file
Binary file not shown.
BIN
survival/model/model_260.pth
Normal file
BIN
survival/model/model_260.pth
Normal file
Binary file not shown.
BIN
survival/model/model_520.pth
Normal file
BIN
survival/model/model_520.pth
Normal file
Binary file not shown.
BIN
survival/model/modeltrained.pth
Normal file
BIN
survival/model/modeltrained.pth
Normal file
Binary file not shown.
BIN
survival/model/modeltrained2.pth
Normal file
BIN
survival/model/modeltrained2.pth
Normal file
Binary file not shown.
BIN
survival/model/new_model120games.pth
Normal file
BIN
survival/model/new_model120games.pth
Normal file
Binary file not shown.
BIN
survival/model/newer_model120games.pth
Normal file
BIN
survival/model/newer_model120games.pth
Normal file
Binary file not shown.
@ -1,78 +0,0 @@
|
||||
from random import randint
|
||||
|
||||
import pygame
|
||||
|
||||
|
||||
class Player:
|
||||
def __init__(self):
|
||||
# self.pos = [1024, 512]
|
||||
# self.velocity = [0, 0]
|
||||
# self.image = Image('stevenson.png')
|
||||
# self.image.set_scale(2)
|
||||
# self.speed = 30
|
||||
# self.movement_target = [self.pos[0], self.pos[1]]
|
||||
# self.timer = 0
|
||||
pass
|
||||
|
||||
def draw(self, camera):
|
||||
|
||||
self.image.pos = self.pos
|
||||
camera.draw(self.image)
|
||||
|
||||
def is_moving(self):
|
||||
return self.pos != self.movement_target
|
||||
|
||||
def move_in_random_direction(self):
|
||||
value = randint(0, 3)
|
||||
random_movement = {
|
||||
0: self.move_up,
|
||||
1: self.move_down,
|
||||
2: self.move_left,
|
||||
3: self.move_right
|
||||
}
|
||||
random_movement[value]()
|
||||
|
||||
def update(self, delta, pressed_keys):
|
||||
if self.is_moving():
|
||||
if self.velocity[0] != 0:
|
||||
self.pos[0] += self.velocity[0] * self.speed * delta / 100
|
||||
if abs(self.movement_target[0] - self.pos[0]) < 0.1 * self.speed:
|
||||
self.velocity = [0, 0]
|
||||
self.pos = self.movement_target
|
||||
else:
|
||||
self.pos[1] += self.velocity[1] * self.speed * delta / 100
|
||||
if abs(self.pos[1] - self.movement_target[1]) < 0.1 * self.speed:
|
||||
self.velocity = [0, 0]
|
||||
self.pos = self.movement_target
|
||||
return
|
||||
|
||||
self.timer += delta
|
||||
|
||||
if self.timer > 1000:
|
||||
self.move_in_random_direction()
|
||||
self.timer = 0
|
||||
|
||||
if pressed_keys[pygame.K_LEFT]:
|
||||
self.move_left()
|
||||
elif pressed_keys[pygame.K_RIGHT]:
|
||||
self.move_right()
|
||||
elif pressed_keys[pygame.K_DOWN]:
|
||||
self.move_down()
|
||||
elif pressed_keys[pygame.K_UP]:
|
||||
self.move_up()
|
||||
|
||||
def move_left(self):
|
||||
self.velocity = [-1, 0]
|
||||
self.movement_target = [self.pos[0] - 32, self.pos[1]]
|
||||
|
||||
def move_right(self):
|
||||
self.velocity = [1, 0]
|
||||
self.movement_target = [self.pos[0] + 32, self.pos[1]]
|
||||
|
||||
def move_up(self):
|
||||
self.velocity = [0, -1]
|
||||
self.movement_target = [self.pos[0], self.pos[1] - 32]
|
||||
|
||||
def move_down(self):
|
||||
self.velocity = [0, 1]
|
||||
self.movement_target = [self.pos[0], self.pos[1] + 32]
|
1
survival/seeds/1.bin
Normal file
1
survival/seeds/1.bin
Normal file
File diff suppressed because one or more lines are too long
1
survival/seeds/10.bin
Normal file
1
survival/seeds/10.bin
Normal file
File diff suppressed because one or more lines are too long
1
survival/seeds/2.bin
Normal file
1
survival/seeds/2.bin
Normal file
File diff suppressed because one or more lines are too long
1
survival/seeds/3.bin
Normal file
1
survival/seeds/3.bin
Normal file
File diff suppressed because one or more lines are too long
1
survival/seeds/4.bin
Normal file
1
survival/seeds/4.bin
Normal file
File diff suppressed because one or more lines are too long
1
survival/seeds/5.bin
Normal file
1
survival/seeds/5.bin
Normal file
File diff suppressed because one or more lines are too long
1
survival/seeds/6.bin
Normal file
1
survival/seeds/6.bin
Normal file
File diff suppressed because one or more lines are too long
1
survival/seeds/7.bin
Normal file
1
survival/seeds/7.bin
Normal file
File diff suppressed because one or more lines are too long
1
survival/seeds/8.bin
Normal file
1
survival/seeds/8.bin
Normal file
File diff suppressed because one or more lines are too long
1
survival/seeds/9.bin
Normal file
1
survival/seeds/9.bin
Normal file
File diff suppressed because one or more lines are too long
@ -1,4 +1,18 @@
|
||||
SCREEN_WIDTH = 1000
|
||||
SCREEN_HEIGHT = 600
|
||||
RESOURCES_AMOUNT = 300
|
||||
DIRECTION_CHANGE_DELAY = 200
|
||||
RESOURCES_AMOUNT = 175
|
||||
DIRECTION_CHANGE_DELAY = 5
|
||||
PLAYER_START_POSITION = [20, 10]
|
||||
STARTING_RESOURCES_AMOUNT = 5
|
||||
AGENT_VISION_RANGE = 5
|
||||
NEURAL_INPUT_SIZE = 11
|
||||
NEURAL_OUTPUT_SIZE = 3
|
||||
LEARN = True
|
||||
MUTATE_NETWORKS = True
|
||||
NETWORK_PARAMS = {
|
||||
"neurons": 256,
|
||||
"layers": 1,
|
||||
"activation": 'relu',
|
||||
"ratio": 0.001,
|
||||
"optimizer": 'Adam'
|
||||
}
|
||||
|
62
survival/systems/automation_system.py
Normal file
62
survival/systems/automation_system.py
Normal file
@ -0,0 +1,62 @@
|
||||
from survival import esper, GameMap
|
||||
from survival.components.moving_component import MovingComponent
|
||||
from survival.components.pathfinding_component import PathfindingComponent
|
||||
from survival.components.position_component import PositionComponent
|
||||
from survival.components.resource_component import ResourceComponent
|
||||
|
||||
|
||||
class AutomationComponent:
|
||||
pass
|
||||
|
||||
|
||||
class AutomationSystem(esper.Processor):
|
||||
def __init__(self, game_map: GameMap):
|
||||
self.game_map = game_map
|
||||
|
||||
def process(self, dt):
|
||||
for ent, (automation, pos) in self.world.get_components(AutomationComponent, PositionComponent):
|
||||
if self.world.has_component(ent, PathfindingComponent):
|
||||
continue
|
||||
|
||||
resource = self.detect_closest_resource(pos, ent)
|
||||
if resource is None:
|
||||
# TODO: Check if target position is not out of map bounds
|
||||
self.world.add_component(ent, PathfindingComponent((pos.grid_position[0] * 32 + 64, pos.grid_position[1] * 32 + 64)))
|
||||
# Move somewhere else
|
||||
else:
|
||||
target = self.world.component_for_entity(resource, PositionComponent).grid_position
|
||||
self.world.add_component(ent, PathfindingComponent((target[0] * 32, target[1] * 32), True))
|
||||
# Go collect target resource
|
||||
|
||||
def detect_closest_resource(self, position: PositionComponent, target_entity: int):
|
||||
entity_position = position.grid_position
|
||||
x_range = [entity_position[0] - 5, entity_position[0] + 5]
|
||||
y_range = [entity_position[1] - 5, entity_position[1] + 5]
|
||||
|
||||
# Check if range is not out of map bounds
|
||||
if x_range[0] < 0:
|
||||
x_range[0] = 0
|
||||
if x_range[1] >= self.game_map.width:
|
||||
x_range[1] = self.game_map.width - 1
|
||||
if y_range[0] < 0:
|
||||
y_range[0] = 0
|
||||
if y_range[1] >= self.game_map.height:
|
||||
y_range[1] = self.game_map.height - 1
|
||||
|
||||
found_resource = [-1, 200000]
|
||||
|
||||
for y in range(y_range[0], y_range[1]):
|
||||
for x in range(x_range[0], x_range[1]):
|
||||
ent = self.game_map.get_entity([x, y])
|
||||
if ent == target_entity:
|
||||
continue
|
||||
if ent is not None and self.world.has_component(ent, ResourceComponent):
|
||||
res_position = self.world.component_for_entity(ent, PositionComponent).grid_position
|
||||
distance = abs(entity_position[0] - res_position[0]) + abs(entity_position[1] - res_position[1])
|
||||
if found_resource[1] > distance:
|
||||
found_resource = [ent, distance]
|
||||
|
||||
if found_resource[0] == -1:
|
||||
return None
|
||||
else:
|
||||
return found_resource[0]
|
@ -1,10 +1,11 @@
|
||||
import operator
|
||||
|
||||
from survival import esper
|
||||
from survival.components.OnCollisionComponent import OnCollisionComponent
|
||||
from survival.components.on_collision_component import OnCollisionComponent
|
||||
from survival.components.moving_component import MovingComponent
|
||||
from survival.components.position_component import PositionComponent
|
||||
from survival.enums import Direction
|
||||
from survival.game.enums import Direction
|
||||
from survival.systems.consumption_system import ConsumeComponent
|
||||
|
||||
|
||||
class CollisionSystem(esper.Processor):
|
||||
@ -18,23 +19,24 @@ class CollisionSystem(esper.Processor):
|
||||
continue
|
||||
|
||||
moving.checked_collision = True
|
||||
|
||||
vector = Direction.get_vector(pos.direction)
|
||||
moving.target = tuple(map(operator.add, vector, pos.grid_position))
|
||||
moving.direction_vector = vector
|
||||
if self.check_collision(moving.target):
|
||||
self.world.add_component(ent, ConsumeComponent(0.05))
|
||||
self.world.remove_component(ent, MovingComponent)
|
||||
onCol.callAll()
|
||||
onCol.call_all()
|
||||
colliding_object: int = self.map.get_entity(moving.target)
|
||||
|
||||
if colliding_object is None or not self.world.entity_exists(colliding_object):
|
||||
continue
|
||||
|
||||
if self.world.has_component(colliding_object, OnCollisionComponent):
|
||||
self.world.component_for_entity(colliding_object, OnCollisionComponent).callAll()
|
||||
self.world.component_for_entity(colliding_object, OnCollisionComponent).call_all()
|
||||
|
||||
else:
|
||||
self.map.move_entity(pos.grid_position, moving.target)
|
||||
self.world.add_component(ent, ConsumeComponent(self.map.get_cost(moving.target)))
|
||||
pos.grid_position = moving.target
|
||||
|
||||
def check_collision(self, pos):
|
||||
|
64
survival/systems/consumption_system.py
Normal file
64
survival/systems/consumption_system.py
Normal file
@ -0,0 +1,64 @@
|
||||
import random
|
||||
|
||||
from survival import esper
|
||||
from survival.components.consumption_component import ConsumptionComponent
|
||||
from survival.components.inventory_component import InventoryComponent
|
||||
from survival.components.learning_component import LearningComponent
|
||||
from survival.components.moving_component import MovingComponent
|
||||
from survival.generators.resource_type import ResourceType
|
||||
|
||||
|
||||
class ConsumeComponent:
|
||||
def __init__(self, cost):
|
||||
self.cost = cost
|
||||
|
||||
|
||||
class ConsumptionSystem(esper.Processor):
|
||||
CONSUMPTION_FACTOR = 0.05
|
||||
CONSUMPTION_RANGE = 0.07
|
||||
|
||||
def __init__(self, callback):
|
||||
self.callback = callback
|
||||
|
||||
def process(self, dt):
|
||||
cons: ConsumptionComponent
|
||||
inventory: InventoryComponent
|
||||
c: ConsumeComponent
|
||||
for ent, (cons, inventory, c) in self.world.get_components(ConsumptionComponent, InventoryComponent,
|
||||
ConsumeComponent):
|
||||
for resource in cons.status.keys():
|
||||
cons.status[resource] -= c.cost * self.CONSUMPTION_FACTOR + random.uniform(-self.CONSUMPTION_RANGE,
|
||||
self.CONSUMPTION_RANGE)
|
||||
if cons.status[resource] < 0:
|
||||
inventory.items[resource] -= 1
|
||||
cons.status[resource] = 1
|
||||
|
||||
if self.world.has_component(ent, LearningComponent):
|
||||
for resource in cons.status.keys():
|
||||
if inventory.items[resource] <= 0 and self.world.has_component(ent, LearningComponent):
|
||||
# If entity has run out of items
|
||||
learning: LearningComponent = self.world.component_for_entity(ent, LearningComponent)
|
||||
learning.reward -= 1
|
||||
learning.done = True
|
||||
break
|
||||
else:
|
||||
self.callback(ent)
|
||||
|
||||
self.world.remove_component(ent, ConsumeComponent)
|
||||
# cons.timer -= dt
|
||||
# if cons.timer > 0:
|
||||
# continue
|
||||
# cons.timer = cons.timer_value
|
||||
#
|
||||
# if self.world.has_component(ent, LearningComponent):
|
||||
# # If no item was picked up
|
||||
# if cons.last_inventory_state == inventory.total_items_count():
|
||||
# learning: LearningComponent = self.world.component_for_entity(ent, LearningComponent)
|
||||
# learning.reward += -10
|
||||
# learning.done = True
|
||||
# cons.last_inventory_state = inventory.total_items_count()
|
||||
# else:
|
||||
# if inventory.has_item(ResourceType.FOOD):
|
||||
# inventory.remove_item(ResourceType.FOOD, 1)
|
||||
# else:
|
||||
# self.callback()
|
@ -1,21 +1,22 @@
|
||||
from survival import esper
|
||||
from survival.components.position_component import PositionComponent
|
||||
from survival.components.sprite_component import SpriteComponent
|
||||
from survival.user_interface import UserInterface
|
||||
from survival.game.user_interface import UserInterface
|
||||
|
||||
|
||||
class DrawSystem(esper.Processor):
|
||||
def __init__(self, camera):
|
||||
self.camera = camera
|
||||
self.ui = None
|
||||
self.ui = UserInterface(self.camera.window)
|
||||
|
||||
def initialize_interface(self, inventory):
|
||||
self.ui = UserInterface(self.camera.window, inventory)
|
||||
self.ui.load_inventory(inventory)
|
||||
|
||||
def process(self, dt):
|
||||
for ent, (sprite, pos) in self.world.get_components(SpriteComponent, PositionComponent):
|
||||
sprite.image.pos = pos.position
|
||||
sprite.image.origin = (32 * pos.direction.value, 0)
|
||||
self.camera.draw(sprite.image)
|
||||
if self.ui.initialized:
|
||||
self.ui.update()
|
||||
self.ui.draw()
|
||||
|
@ -1,16 +1,18 @@
|
||||
import pygame
|
||||
|
||||
from survival import esper
|
||||
from survival import esper, GameMap
|
||||
from survival.components.direction_component import DirectionChangeComponent
|
||||
from survival.components.input_component import InputComponent
|
||||
from survival.components.moving_component import MovingComponent
|
||||
from survival.components.pathfinding_component import PathfindingComponent
|
||||
from survival.components.position_component import PositionComponent
|
||||
from survival.components.resource_component import ResourceComponent
|
||||
|
||||
|
||||
class InputSystem(esper.Processor):
|
||||
def __init__(self, camera):
|
||||
def __init__(self, camera, game_map: GameMap):
|
||||
self.camera = camera
|
||||
self.game_map = game_map
|
||||
|
||||
def process(self, dt):
|
||||
for ent, (inp, pos) in self.world.get_components(InputComponent, PositionComponent):
|
||||
@ -20,6 +22,10 @@ class InputSystem(esper.Processor):
|
||||
pos = pygame.mouse.get_pos()
|
||||
pos = (pos[0] - self.camera.camera.left, pos[1] - self.camera.camera.top)
|
||||
if not self.world.has_component(ent, PathfindingComponent):
|
||||
target_ent = self.game_map.get_entity([int(pos[0] / 32), int(pos[1]/ 32)])
|
||||
if target_ent is not None and self.world.has_component(target_ent, ResourceComponent):
|
||||
self.world.add_component(ent, PathfindingComponent(pos))
|
||||
else:
|
||||
self.world.add_component(ent, PathfindingComponent(pos))
|
||||
|
||||
if self.world.has_component(ent, MovingComponent):
|
||||
|
@ -13,11 +13,13 @@ class MovementSystem(esper.Processor):
|
||||
for ent, (mov, pos, moving, sprite) in self.world.get_components(MovementComponent, PositionComponent,
|
||||
MovingComponent,
|
||||
SpriteComponent):
|
||||
cost = self.map.get_cost(moving.target)
|
||||
pos.position[0] += moving.direction_vector[0] * mov.speed * dt / 100 / cost
|
||||
pos.position[1] += moving.direction_vector[1] * mov.speed * dt / 100 / cost
|
||||
|
||||
if abs(moving.target[0] * 32 - pos.position[0]) < 0.1 * mov.speed and abs(
|
||||
pos.position[1] - moving.target[1] * 32) < 0.1 * mov.speed:
|
||||
# cost = self.map.get_cost(moving.target)
|
||||
# pos.position[0] += moving.direction_vector[0] * mov.speed * dt / 100 / cost
|
||||
# pos.position[1] += moving.direction_vector[1] * mov.speed * dt / 100 / cost
|
||||
#
|
||||
# if abs(moving.target[0] * 32 - pos.position[0]) < 1 * mov.speed and abs(
|
||||
# pos.position[1] - moving.target[1] * 32) < 1 * mov.speed:
|
||||
# pos.position = [moving.target[0] * 32, moving.target[1] * 32]
|
||||
# self.world.remove_component(ent, MovingComponent)
|
||||
pos.position = [moving.target[0] * 32, moving.target[1] * 32]
|
||||
self.world.remove_component(ent, MovingComponent)
|
||||
|
142
survival/systems/neural_system.py
Normal file
142
survival/systems/neural_system.py
Normal file
@ -0,0 +1,142 @@
|
||||
import random
|
||||
from collections import deque
|
||||
|
||||
import torch
|
||||
|
||||
from survival import esper, GameMap
|
||||
from survival.ai.genetic_algorithm import GeneticAlgorithm
|
||||
from survival.components.direction_component import DirectionChangeComponent
|
||||
from survival.components.inventory_component import InventoryComponent
|
||||
from survival.components.moving_component import MovingComponent
|
||||
from survival.components.position_component import PositionComponent
|
||||
from survival.components.learning_component import LearningComponent
|
||||
from survival.components.time_component import TimeComponent
|
||||
from survival.ai.graph_search import Action
|
||||
from survival.ai.learning_utils import get_state, LearningUtils
|
||||
from survival.ai.model import LinearQNetwork, QTrainer
|
||||
from survival.settings import LEARN, MUTATE_NETWORKS
|
||||
|
||||
MAX_MEMORY = 100_000
|
||||
BATCH_SIZE = 1000
|
||||
|
||||
|
||||
class NeuralSystem(esper.Processor):
|
||||
def __init__(self, game_map: GameMap, callback):
|
||||
self.game_map = game_map
|
||||
self.reset_game = callback
|
||||
self.n_games = 0 # number of games played
|
||||
if MUTATE_NETWORKS:
|
||||
self.starting_epsilon = GeneticAlgorithm.GAMES_PER_NETWORK / 2
|
||||
else:
|
||||
self.starting_epsilon = 100
|
||||
self.epsilon = 0 # controlls the randomness
|
||||
self.gamma = 0.9 # discount rate
|
||||
self.memory = deque(maxlen=MAX_MEMORY) # exceeding memory removes the left elements to make more space
|
||||
self.model = None # self.model = LinearQNetwork.load(11, 256, 3)
|
||||
self.trainer = None # QTrainer(self.model, lr=LR, gamma=self.gamma)
|
||||
self.utils = LearningUtils()
|
||||
self.best_action = None
|
||||
|
||||
def load_model(self, model: LinearQNetwork):
|
||||
self.model = model
|
||||
self.trainer = QTrainer(self.model, self.model.network_params['ratio'], self.gamma,
|
||||
self.model.network_params['optimizer'])
|
||||
self.utils = LearningUtils()
|
||||
self.memory = deque(maxlen=MAX_MEMORY)
|
||||
self.starting_epsilon = GeneticAlgorithm.GAMES_PER_NETWORK / 2
|
||||
self.n_games = 0
|
||||
|
||||
def remember(self, state, action, reward, next_state, done):
|
||||
self.memory.append((state, action, reward, next_state, done))
|
||||
|
||||
def train_short_memory(self, state, action, reward, next_state, done):
|
||||
self.trainer.train_step(state, action, reward, next_state, done)
|
||||
|
||||
def train_long_memory(self):
|
||||
if len(self.memory) > BATCH_SIZE:
|
||||
mini_sample = random.sample(self.memory, BATCH_SIZE)
|
||||
else:
|
||||
mini_sample = self.memory
|
||||
states, actions, rewards, next_states, dones = zip(*mini_sample)
|
||||
self.trainer.train_step(states, actions, rewards, next_states, dones)
|
||||
|
||||
def get_action(self, state):
|
||||
self.epsilon = self.starting_epsilon - self.n_games
|
||||
final_move = [0, 0, 0]
|
||||
if random.randint(0, 200) < self.epsilon:
|
||||
move = random.randint(0, 2)
|
||||
final_move[move] = 1
|
||||
else:
|
||||
state_zero = torch.tensor(state, dtype=torch.float)
|
||||
prediction = self.model(state_zero)
|
||||
move = torch.argmax(prediction).item()
|
||||
final_move[move] = 1
|
||||
|
||||
return final_move
|
||||
|
||||
def process(self, dt):
|
||||
for ent, (pos, inventory, time, learning) in self.world.get_components(PositionComponent, InventoryComponent,
|
||||
TimeComponent, LearningComponent):
|
||||
if not learning.made_step:
|
||||
learning.reset()
|
||||
self.best_action = None
|
||||
|
||||
# Get the closest resource | [entity, path, cost]
|
||||
resource: [int, list, int] = self.game_map.find_nearest_resource(self.world, ent, pos)
|
||||
|
||||
if resource is not None:
|
||||
# If resource was found get the best move chosen by A*
|
||||
self.best_action = resource[1][0]
|
||||
|
||||
# Get current entity state
|
||||
old_state = get_state(self, ent, resource)
|
||||
# Predict the action
|
||||
action = self.get_action(old_state)
|
||||
# Save the action
|
||||
learning.load_step(old_state, action, resource)
|
||||
# Perform the action
|
||||
act = Action.perform(self.world, ent, Action.from_array(action))
|
||||
self.utils.append_action(act, pos)
|
||||
|
||||
# Add reward if chosen action was the best action
|
||||
if act == self.best_action:
|
||||
learning.reward += 1
|
||||
continue
|
||||
|
||||
# Wait for the action to complete
|
||||
if self.world.has_component(ent, DirectionChangeComponent) or self.world.has_component(ent,
|
||||
MovingComponent):
|
||||
continue
|
||||
|
||||
self.utils.check_last_actions(learning)
|
||||
|
||||
resource = learning.resource
|
||||
if resource is None or not self.world.entity_exists(resource[0]):
|
||||
# Find a new resource if no resource was found or the last one was consumed
|
||||
resource = self.game_map.find_nearest_resource(self.world, ent, pos)
|
||||
|
||||
# Get new state
|
||||
new_state = get_state(self, ent, resource)
|
||||
# Train agent's memory
|
||||
self.train_short_memory(learning.old_state, learning.action, learning.reward, new_state, learning.done)
|
||||
self.remember(learning.old_state, learning.action, learning.reward, new_state, learning.done)
|
||||
|
||||
learning.made_step = False
|
||||
|
||||
if learning.done:
|
||||
self.n_games += 1
|
||||
if LEARN:
|
||||
self.train_long_memory()
|
||||
if learning.score > learning.record:
|
||||
learning.record = learning.score
|
||||
if LEARN and not MUTATE_NETWORKS:
|
||||
self.model.save()
|
||||
|
||||
# print('Game', self.n_games, 'Score', learning.score, 'Record', learning.record)
|
||||
self.utils.add_scores(learning, self.n_games)
|
||||
|
||||
self.model.scores.append(learning.score)
|
||||
learning.score = 0
|
||||
self.utils.plot()
|
||||
|
||||
self.reset_game()
|
@ -3,21 +3,20 @@ from survival.components.direction_component import DirectionChangeComponent
|
||||
from survival.components.movement_component import MovementComponent
|
||||
from survival.components.moving_component import MovingComponent
|
||||
from survival.components.position_component import PositionComponent
|
||||
from survival.enums import Direction
|
||||
from survival.graph_search import graph_search, Action
|
||||
from survival.game.enums import Direction
|
||||
from survival.ai.graph_search import graph_search, Action
|
||||
from survival.systems.input_system import PathfindingComponent
|
||||
|
||||
|
||||
class PathfindingMovementSystem(esper.Processor):
|
||||
def __init__(self, game_map):
|
||||
self.game_map = game_map
|
||||
pass
|
||||
|
||||
def process(self, dt):
|
||||
for ent, (pos, pathfinding, movement) in self.world.get_components(PositionComponent, PathfindingComponent,
|
||||
MovementComponent):
|
||||
if pathfinding.path is None:
|
||||
pathfinding.path = graph_search(self.game_map, pos, pathfinding.target_grid_pos)
|
||||
pathfinding.path, cost = graph_search(self.game_map, pos, pathfinding.target_grid_pos, self.world)
|
||||
|
||||
if len(pathfinding.path) < 1:
|
||||
self.world.remove_component(ent, PathfindingComponent)
|
||||
|
@ -9,4 +9,3 @@ class TimeSystem(esper.Processor):
|
||||
if time.timer > 1000:
|
||||
time.add_time(1)
|
||||
time.timer = 0
|
||||
print(time)
|
||||
|
18
survival/systems/vision_system.py
Normal file
18
survival/systems/vision_system.py
Normal file
@ -0,0 +1,18 @@
|
||||
from survival import esper
|
||||
from survival.components.position_component import PositionComponent
|
||||
from survival.components.vision_component import VisionComponent
|
||||
|
||||
|
||||
class VisionSystem(esper.Processor):
|
||||
def __init__(self, camera):
|
||||
self.camera = camera
|
||||
|
||||
def process(self, dt):
|
||||
pos: PositionComponent
|
||||
vision: VisionComponent
|
||||
for ent, (pos, vision) in self.world.get_components(PositionComponent, VisionComponent):
|
||||
vision.update_positions(pos.position)
|
||||
self.camera.window.blit(vision.surface_l, self.camera.apply(vision.l_pos))
|
||||
self.camera.window.blit(vision.surface_r, self.camera.apply(vision.r_pos))
|
||||
self.camera.window.blit(vision.surface_t, self.camera.apply(vision.t_pos))
|
||||
self.camera.window.blit(vision.surface_b, self.camera.apply(vision.b_pos))
|
Loading…
Reference in New Issue
Block a user