Compare commits
No commits in common. "master" and "SURV-002" have entirely different histories.
BIN
assets/atlas.png
BIN
assets/atlas.png
Binary file not shown.
Before Width: | Height: | Size: 21 KiB After Width: | Height: | Size: 20 KiB |
BIN
assets/chest.png
BIN
assets/chest.png
Binary file not shown.
Before Width: | Height: | Size: 885 B |
BIN
assets/home.png
BIN
assets/home.png
Binary file not shown.
Before Width: | Height: | Size: 1.6 KiB |
BIN
assets/ui.png
BIN
assets/ui.png
Binary file not shown.
Before Width: | Height: | Size: 712 B |
100
data.txt
100
data.txt
@ -1,100 +0,0 @@
|
|||||||
{"weight": 9, "eatable": true, "toughness": 1, "resource": "food"}
|
|
||||||
{"weight": 11, "eatable": true, "toughness": 0, "resource": "wood"}
|
|
||||||
{"weight": 5, "eatable": false, "toughness": 1, "resource": "wood"}
|
|
||||||
{"weight": 11, "eatable": true, "toughness": 0, "resource": "wood"}
|
|
||||||
{"weight": 7, "eatable": true, "toughness": 2, "resource": "food"}
|
|
||||||
{"weight": 7, "eatable": false, "toughness": 3, "resource": "wood"}
|
|
||||||
{"weight": 5, "eatable": true, "toughness": 3, "resource": "food"}
|
|
||||||
{"weight": 5, "eatable": false, "toughness": 3, "resource": "wood"}
|
|
||||||
{"weight": 1, "eatable": true, "toughness": 0, "resource": "water"}
|
|
||||||
{"weight": 2, "eatable": false, "toughness": 0, "resource": "wood"}
|
|
||||||
{"weight": 4, "eatable": false, "toughness": 1, "resource": "wood"}
|
|
||||||
{"weight": 1, "eatable": true, "toughness": 3, "resource": "food"}
|
|
||||||
{"weight": 3, "eatable": false, "toughness": 2, "resource": "wood"}
|
|
||||||
{"weight": 6, "eatable": true, "toughness": 1, "resource": "food"}
|
|
||||||
{"weight": 7, "eatable": false, "toughness": 0, "resource": "wood"}
|
|
||||||
{"weight": 1, "eatable": false, "toughness": 1, "resource": "wood"}
|
|
||||||
{"weight": 6, "eatable": false, "toughness": 3, "resource": "wood"}
|
|
||||||
{"weight": 2, "eatable": false, "toughness": 2, "resource": "wood"}
|
|
||||||
{"weight": 10, "eatable": false, "toughness": 3, "resource": "wood"}
|
|
||||||
{"weight": 6, "eatable": false, "toughness": 1, "resource": "wood"}
|
|
||||||
{"weight": 11, "eatable": false, "toughness": 3, "resource": "wood"}
|
|
||||||
{"weight": 2, "eatable": false, "toughness": 1, "resource": "wood"}
|
|
||||||
{"weight": 3, "eatable": true, "toughness": 1, "resource": "food"}
|
|
||||||
{"weight": 6, "eatable": true, "toughness": 3, "resource": "food"}
|
|
||||||
{"weight": 8, "eatable": false, "toughness": 3, "resource": "wood"}
|
|
||||||
{"weight": 6, "eatable": true, "toughness": 3, "resource": "food"}
|
|
||||||
{"weight": 9, "eatable": true, "toughness": 1, "resource": "food"}
|
|
||||||
{"weight": 9, "eatable": true, "toughness": 1, "resource": "food"}
|
|
||||||
{"weight": 11, "eatable": false, "toughness": 0, "resource": "wood"}
|
|
||||||
{"weight": 4, "eatable": true, "toughness": 3, "resource": "food"}
|
|
||||||
{"weight": 4, "eatable": true, "toughness": 2, "resource": "food"}
|
|
||||||
{"weight": 4, "eatable": false, "toughness": 3, "resource": "wood"}
|
|
||||||
{"weight": 1, "eatable": true, "toughness": 3, "resource": "food"}
|
|
||||||
{"weight": 5, "eatable": true, "toughness": 2, "resource": "food"}
|
|
||||||
{"weight": 3, "eatable": false, "toughness": 1, "resource": "wood"}
|
|
||||||
{"weight": 0, "eatable": false, "toughness": 2, "resource": "wood"}
|
|
||||||
{"weight": 10, "eatable": true, "toughness": 1, "resource": "food"}
|
|
||||||
{"weight": 9, "eatable": true, "toughness": 0, "resource": "water"}
|
|
||||||
{"weight": 4, "eatable": false, "toughness": 3, "resource": "wood"}
|
|
||||||
{"weight": 10, "eatable": true, "toughness": 0, "resource": "water"}
|
|
||||||
{"weight": 10, "eatable": true, "toughness": 3, "resource": "food"}
|
|
||||||
{"weight": 11, "eatable": false, "toughness": 0, "resource": "wood"}
|
|
||||||
{"weight": 8, "eatable": true, "toughness": 1, "resource": "food"}
|
|
||||||
{"weight": 7, "eatable": true, "toughness": 1, "resource": "food"}
|
|
||||||
{"weight": 1, "eatable": true, "toughness": 1, "resource": "food"}
|
|
||||||
{"weight": 11, "eatable": false, "toughness": 1, "resource": "wood"}
|
|
||||||
{"weight": 11, "eatable": false, "toughness": 3, "resource": "wood"}
|
|
||||||
{"weight": 3, "eatable": false, "toughness": 3, "resource": "wood"}
|
|
||||||
{"weight": 2, "eatable": true, "toughness": 1, "resource": "food"}
|
|
||||||
{"weight": 4, "eatable": false, "toughness": 2, "resource": "wood"}
|
|
||||||
{"weight": 6, "eatable": true, "toughness": 0, "resource": "water"}
|
|
||||||
{"weight": 2, "eatable": true, "toughness": 2, "resource": "food"}
|
|
||||||
{"weight": 10, "eatable": true, "toughness": 2, "resource": "food"}
|
|
||||||
{"weight": 0, "eatable": true, "toughness": 0, "resource": "water"}
|
|
||||||
{"weight": 10, "eatable": true, "toughness": 0, "resource": "water"}
|
|
||||||
{"weight": 9, "eatable": true, "toughness": 0, "resource": "water"}
|
|
||||||
{"weight": 2, "eatable": true, "toughness": 0, "resource": "water"}
|
|
||||||
{"weight": 8, "eatable": true, "toughness": 2, "resource": "food"}
|
|
||||||
{"weight": 9, "eatable": false, "toughness": 2, "resource": "wood"}
|
|
||||||
{"weight": 6, "eatable": true, "toughness": 2, "resource": "food"}
|
|
||||||
{"weight": 5, "eatable": true, "toughness": 2, "resource": "food"}
|
|
||||||
{"weight": 4, "eatable": true, "toughness": 2, "resource": "food"}
|
|
||||||
{"weight": 0, "eatable": true, "toughness": 3, "resource": "food"}
|
|
||||||
{"weight": 8, "eatable": false, "toughness": 1, "resource": "wood"}
|
|
||||||
{"weight": 2, "eatable": true, "toughness": 1, "resource": "food"}
|
|
||||||
{"weight": 2, "eatable": false, "toughness": 1, "resource": "wood"}
|
|
||||||
{"weight": 11, "eatable": false, "toughness": 0, "resource": "wood"}
|
|
||||||
{"weight": 0, "eatable": true, "toughness": 1, "resource": "food"}
|
|
||||||
{"weight": 9, "eatable": false, "toughness": 0, "resource": "wood"}
|
|
||||||
{"weight": 0, "eatable": true, "toughness": 0, "resource": "water"}
|
|
||||||
{"weight": 5, "eatable": false, "toughness": 3, "resource": "wood"}
|
|
||||||
{"weight": 3, "eatable": false, "toughness": 3, "resource": "wood"}
|
|
||||||
{"weight": 0, "eatable": true, "toughness": 0, "resource": "water"}
|
|
||||||
{"weight": 7, "eatable": false, "toughness": 2, "resource": "wood"}
|
|
||||||
{"weight": 4, "eatable": true, "toughness": 1, "resource": "food"}
|
|
||||||
{"weight": 4, "eatable": false, "toughness": 0, "resource": "wood"}
|
|
||||||
{"weight": 3, "eatable": false, "toughness": 3, "resource": "wood"}
|
|
||||||
{"weight": 8, "eatable": false, "toughness": 3, "resource": "wood"}
|
|
||||||
{"weight": 10, "eatable": false, "toughness": 1, "resource": "wood"}
|
|
||||||
{"weight": 3, "eatable": true, "toughness": 1, "resource": "food"}
|
|
||||||
{"weight": 3, "eatable": true, "toughness": 1, "resource": "food"}
|
|
||||||
{"weight": 1, "eatable": false, "toughness": 2, "resource": "wood"}
|
|
||||||
{"weight": 1, "eatable": false, "toughness": 2, "resource": "wood"}
|
|
||||||
{"weight": 5, "eatable": true, "toughness": 1, "resource": "food"}
|
|
||||||
{"weight": 5, "eatable": true, "toughness": 2, "resource": "food"}
|
|
||||||
{"weight": 9, "eatable": false, "toughness": 1, "resource": "wood"}
|
|
||||||
{"weight": 3, "eatable": true, "toughness": 3, "resource": "food"}
|
|
||||||
{"weight": 6, "eatable": true, "toughness": 2, "resource": "food"}
|
|
||||||
{"weight": 7, "eatable": true, "toughness": 0, "resource": "water"}
|
|
||||||
{"weight": 9, "eatable": false, "toughness": 0, "resource": "wood"}
|
|
||||||
{"weight": 10, "eatable": true, "toughness": 3, "resource": "food"}
|
|
||||||
{"weight": 9, "eatable": false, "toughness": 0, "resource": "wood"}
|
|
||||||
{"weight": 11, "eatable": true, "toughness": 0, "resource": "wood"}
|
|
||||||
{"weight": 10, "eatable": true, "toughness": 3, "resource": "food"}
|
|
||||||
{"weight": 5, "eatable": true, "toughness": 3, "resource": "food"}
|
|
||||||
{"weight": 10, "eatable": false, "toughness": 1, "resource": "wood"}
|
|
||||||
{"weight": 10, "eatable": true, "toughness": 2, "resource": "food"}
|
|
||||||
{"weight": 5, "eatable": true, "toughness": 0, "resource": "water"}
|
|
||||||
{"weight": 0, "eatable": false, "toughness": 2, "resource": "wood"}
|
|
||||||
{"weight": 10, "eatable": false, "toughness": 2, "resource": "wood"}
|
|
@ -1,28 +0,0 @@
|
|||||||
import random
|
|
||||||
|
|
||||||
|
|
||||||
def generate_data():
|
|
||||||
f = open("data.txt", "w")
|
|
||||||
for i in range(100):
|
|
||||||
weight = random.randint(0, 11)
|
|
||||||
eatable = bool(random.randint(0, 1))
|
|
||||||
toughness = random.randint(0, 3)
|
|
||||||
f.write('{')
|
|
||||||
f.write(
|
|
||||||
f'"weight": {weight}, "eatable": {str(eatable).lower()}, "toughness": {toughness}, "resource": "{get_resource_type(weight, eatable, toughness)}"')
|
|
||||||
f.write('}')
|
|
||||||
f.write('\n')
|
|
||||||
f.close()
|
|
||||||
|
|
||||||
|
|
||||||
def get_resource_type(weight, eatable, toughness):
|
|
||||||
if weight > 10 or eatable is False:
|
|
||||||
return "wood"
|
|
||||||
|
|
||||||
if toughness < 1:
|
|
||||||
return "water"
|
|
||||||
|
|
||||||
return "food"
|
|
||||||
|
|
||||||
|
|
||||||
generate_data()
|
|
@ -1,58 +1,43 @@
|
|||||||
import pygame
|
import pygame
|
||||||
|
|
||||||
from survival.ai.genetic_algorithm import GeneticAlgorithm
|
from settings import SCREEN_WIDTH, SCREEN_HEIGHT
|
||||||
from survival.components.inventory_component import InventoryComponent
|
from survival.camera import Camera
|
||||||
from survival.game.game_map import GameMap
|
from survival.game_map import GameMap
|
||||||
from survival.generators.building_generator import BuildingGenerator
|
|
||||||
from survival.generators.player_generator import PlayerGenerator
|
from survival.generators.player_generator import PlayerGenerator
|
||||||
from survival.generators.resource_generator import ResourceGenerator
|
from survival.generators.resource_generator import ResourceGenerator
|
||||||
from survival.generators.world_generator import WorldGenerator
|
from survival.generators.world_generator import WorldGenerator
|
||||||
from survival.settings import SCREEN_WIDTH, SCREEN_HEIGHT, MUTATE_NETWORKS, LEARN
|
|
||||||
from survival.systems.draw_system import DrawSystem
|
|
||||||
from survival.systems.neural_system import NeuralSystem
|
|
||||||
|
|
||||||
|
|
||||||
class Game:
|
|
||||||
def __init__(self):
|
|
||||||
self.world_generator = WorldGenerator(win, self.reset)
|
|
||||||
self.game_map, self.world, self.camera = self.world_generator.create_world()
|
|
||||||
self.run = True
|
|
||||||
if LEARN and MUTATE_NETWORKS:
|
|
||||||
self.genetic_algorithm = GeneticAlgorithm(self.world.get_processor(NeuralSystem), self.finish_training)
|
|
||||||
|
|
||||||
def reset(self):
|
|
||||||
if LEARN and MUTATE_NETWORKS:
|
|
||||||
self.genetic_algorithm.train()
|
|
||||||
self.world_generator.reset_world()
|
|
||||||
|
|
||||||
def finish_training(self):
|
|
||||||
self.run = False
|
|
||||||
|
|
||||||
def update(self, ms):
|
|
||||||
events = pygame.event.get()
|
|
||||||
|
|
||||||
for event in events:
|
|
||||||
if event.type == pygame.QUIT:
|
|
||||||
self.run = False
|
|
||||||
if pygame.key.get_pressed()[pygame.K_DELETE]:
|
|
||||||
self.reset()
|
|
||||||
|
|
||||||
win.fill((0, 0, 0))
|
|
||||||
self.game_map.draw(self.camera)
|
|
||||||
self.world.process(ms)
|
|
||||||
pygame.display.update()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
pygame.init()
|
pygame.init()
|
||||||
|
|
||||||
pygame.font.init()
|
|
||||||
|
|
||||||
win = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))
|
win = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))
|
||||||
pygame.display.set_caption("AI Project")
|
pygame.display.set_caption("AI Project")
|
||||||
|
|
||||||
clock = pygame.time.Clock()
|
clock = pygame.time.Clock()
|
||||||
game = Game()
|
|
||||||
|
|
||||||
while game.run:
|
game_map = GameMap(int(SCREEN_WIDTH / 32) * 2, 2 * int(SCREEN_HEIGHT / 32) + 1)
|
||||||
game.update(clock.tick(500))
|
camera = Camera(game_map.width * 32, game_map.height * 32, win)
|
||||||
|
|
||||||
|
world = WorldGenerator().create_world(camera, game_map)
|
||||||
|
player = PlayerGenerator().create_player(world, game_map)
|
||||||
|
|
||||||
|
ResourceGenerator(world, game_map).generate_resources()
|
||||||
|
|
||||||
|
run = True
|
||||||
|
|
||||||
|
while run:
|
||||||
|
# Set the framerate
|
||||||
|
ms = clock.tick(60)
|
||||||
|
|
||||||
|
events = pygame.event.get()
|
||||||
|
|
||||||
|
for event in events:
|
||||||
|
if event.type == pygame.QUIT:
|
||||||
|
run = False
|
||||||
|
|
||||||
|
keys = pygame.key.get_pressed()
|
||||||
|
|
||||||
|
win.fill((0, 0, 0))
|
||||||
|
game_map.draw(camera)
|
||||||
|
world.process(ms)
|
||||||
|
pygame.display.update()
|
||||||
|
Binary file not shown.
@ -1,60 +0,0 @@
|
|||||||
import json
|
|
||||||
|
|
||||||
from joblib import dump, load
|
|
||||||
from matplotlib import pyplot as plt
|
|
||||||
from sklearn import tree
|
|
||||||
from sklearn.feature_extraction import DictVectorizer
|
|
||||||
|
|
||||||
|
|
||||||
class DecisionTree:
|
|
||||||
def __init__(self):
|
|
||||||
self.clf = None
|
|
||||||
self.vec = None
|
|
||||||
|
|
||||||
def build(self, depth: int):
|
|
||||||
path = "tree_data.json"
|
|
||||||
|
|
||||||
samples = []
|
|
||||||
results = []
|
|
||||||
|
|
||||||
with open(path, "r") as training_file:
|
|
||||||
for sample in training_file:
|
|
||||||
sample, result = self.process_input(sample)
|
|
||||||
samples.append(sample)
|
|
||||||
results.append(result)
|
|
||||||
|
|
||||||
self.vec = DictVectorizer()
|
|
||||||
self.clf = tree.DecisionTreeClassifier(max_depth=depth)
|
|
||||||
self.clf = self.clf.fit(self.vec.fit_transform(samples).toarray(), results)
|
|
||||||
|
|
||||||
def save_model(self, clf_file, vec_file):
|
|
||||||
dump(self.clf, clf_file)
|
|
||||||
dump(self.vec, vec_file)
|
|
||||||
|
|
||||||
def load_model(self, clf_file, vec_file):
|
|
||||||
self.clf = load(clf_file)
|
|
||||||
self.vec = load(vec_file)
|
|
||||||
|
|
||||||
def predict_answer(self, params):
|
|
||||||
return self.clf.predict(self.vec.transform(params).toarray())
|
|
||||||
|
|
||||||
def plot_tree(self):
|
|
||||||
print('Plotting tree...')
|
|
||||||
fig = plt.figure(figsize=(36, 27))
|
|
||||||
_ = tree.plot_tree(self.clf,
|
|
||||||
feature_names=self.vec.get_feature_names(),
|
|
||||||
filled=True)
|
|
||||||
fig.savefig("decistion_tree.png")
|
|
||||||
print('Success!')
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def process_input(line):
|
|
||||||
data = json.loads(line.strip())
|
|
||||||
result = data['result']
|
|
||||||
del data['result']
|
|
||||||
del data['food_result']
|
|
||||||
del data['water_result']
|
|
||||||
del data['wood_result']
|
|
||||||
sample = data
|
|
||||||
|
|
||||||
return sample, result
|
|
@ -1,124 +0,0 @@
|
|||||||
import random
|
|
||||||
from typing import Dict
|
|
||||||
|
|
||||||
from survival.ai.decision_tree.decision_tree import DecisionTree
|
|
||||||
from survival.generators.resource_type import ResourceType
|
|
||||||
|
|
||||||
|
|
||||||
class TreeDataGenerator:
|
|
||||||
INV_RANGE = (1, 100)
|
|
||||||
VISIBLE = (True, False)
|
|
||||||
DISTANCE_RANGE = (3, 7)
|
|
||||||
DISTANCE_FACTOR = 0.2
|
|
||||||
COUNT = (1, 2, 3)
|
|
||||||
|
|
||||||
def generate(self, count=1000):
|
|
||||||
full_data = []
|
|
||||||
self.process(count, full_data)
|
|
||||||
|
|
||||||
self.write_data_to_file(full_data)
|
|
||||||
return full_data
|
|
||||||
|
|
||||||
def process(self, count, full_data):
|
|
||||||
for i in range(count):
|
|
||||||
# if i % 10000 == 0:
|
|
||||||
# print(i)
|
|
||||||
package = {}
|
|
||||||
|
|
||||||
# Create resource data for each resource type.
|
|
||||||
for resource in ResourceType:
|
|
||||||
package[resource] = self.create_resource_data()
|
|
||||||
|
|
||||||
# Get the resource with highest result among all generated resource types.
|
|
||||||
best_resource = self.get_best_resource(package)
|
|
||||||
|
|
||||||
# Unpack packaged resources.
|
|
||||||
(food, water, wood) = (
|
|
||||||
package[ResourceType.FOOD], package[ResourceType.WATER], package[ResourceType.WOOD])
|
|
||||||
|
|
||||||
# Create dictionary filled with data.
|
|
||||||
data = {"food_inv": food[0], 'food_visible': str(food[1]), 'food_distance': food[2],
|
|
||||||
'food_count': food[3], 'food_result': food[4],
|
|
||||||
'water_inv': water[0], 'water_visible': str(water[1]), 'water_distance': water[2],
|
|
||||||
'water_count': water[3], 'water_result': water[4],
|
|
||||||
'wood_inv': wood[0], 'wood_visible': str(wood[1]), 'wood_distance': wood[2],
|
|
||||||
'wood_count': wood[3], 'wood_result': wood[4],
|
|
||||||
'result': best_resource.name.lower()}
|
|
||||||
full_data.append(data)
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def write_data_to_file(full_data):
|
|
||||||
print("Writing to file...")
|
|
||||||
# Open the target file to which the data will be saved and write all the data to it.
|
|
||||||
with open('tree_data.json', 'w') as f:
|
|
||||||
for data in full_data:
|
|
||||||
data_str = str(data).replace("'", '"').replace('"False"', 'false').replace('"True"', 'true')
|
|
||||||
f.write(data_str)
|
|
||||||
f.write('\n')
|
|
||||||
print("Success!")
|
|
||||||
|
|
||||||
def create_resource_data(self):
|
|
||||||
is_visible = random.choice(self.VISIBLE)
|
|
||||||
inventory = random.randint(min(self.INV_RANGE), max(self.INV_RANGE))
|
|
||||||
|
|
||||||
if is_visible:
|
|
||||||
cnt = random.choice(self.COUNT)
|
|
||||||
distance = random.randint(min(self.DISTANCE_RANGE), max(self.DISTANCE_RANGE))
|
|
||||||
else:
|
|
||||||
cnt = 0
|
|
||||||
distance = 0
|
|
||||||
|
|
||||||
# Equation determining the results processed by decision tree.
|
|
||||||
result = (self.INV_RANGE[1] / inventory) * (1 * cnt if is_visible else 0.9) + (
|
|
||||||
max(self.DISTANCE_RANGE) / distance if is_visible else 0.5) * self.DISTANCE_FACTOR
|
|
||||||
|
|
||||||
return [inventory, is_visible, distance, cnt, result]
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def get_best_resource(package: Dict) -> ResourceType:
|
|
||||||
best_resource = None
|
|
||||||
for resource, data in package.items():
|
|
||||||
if best_resource is None or data[:-1] < package[best_resource][:-1]:
|
|
||||||
best_resource = resource
|
|
||||||
return best_resource
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def print_data(full_data):
|
|
||||||
for data in full_data:
|
|
||||||
print(TreeDataGenerator.format_words(["Data", "Apple", "Water", "Wood"]))
|
|
||||||
print(TreeDataGenerator.format_words(["Inventory", data["food_inv"], data["water_inv"], data["wood_inv"]]))
|
|
||||||
print(TreeDataGenerator.format_words(
|
|
||||||
["Visible", data["food_visible"], data["water_visible"], data["wood_visible"]]))
|
|
||||||
print(TreeDataGenerator.format_words(
|
|
||||||
["Distance", data["food_distance"], data["water_distance"], data["wood_distance"]]))
|
|
||||||
print(
|
|
||||||
TreeDataGenerator.format_words(["Count", data["food_count"], data["water_count"], data["wood_count"]]))
|
|
||||||
print(TreeDataGenerator.format_words(
|
|
||||||
["Result", round(data["food_result"], 3), round(data["water_result"], 3),
|
|
||||||
round(data["wood_result"], 3)]))
|
|
||||||
print(f'Best resource: {data["result"]}')
|
|
||||||
print('--------------------------------------------------------------')
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def format_words(words):
|
|
||||||
return '{:>12} {:>12} {:>12} {:>12}'.format(words[0], words[1], words[2], words[3])
|
|
||||||
|
|
||||||
|
|
||||||
# Train tree
|
|
||||||
generator = TreeDataGenerator()
|
|
||||||
data = generator.generate(50000)
|
|
||||||
generator.print_data(data)
|
|
||||||
tree = DecisionTree()
|
|
||||||
tree.build(1000)
|
|
||||||
tree.plot_tree()
|
|
||||||
tree.save_model('classifier.joblib', 'vectorizer.joblib')
|
|
||||||
# ----------------------------------------------------------- #
|
|
||||||
# Use trained tree
|
|
||||||
# tree = DecisionTree()
|
|
||||||
# tree.load_model('classifier.joblib', 'vectorizer.joblib')
|
|
||||||
#
|
|
||||||
# answ = tree.predict_answer({'food_inv': 40, 'water_inv': 10, 'wood_inv': 20,
|
|
||||||
# 'food_distance': 2, 'water_distance': -1, 'wood_distance': 4,
|
|
||||||
# 'food_visible': True, 'water_visible': False, 'wood_visible': True,
|
|
||||||
# 'food_count': 1, 'water_count': 1, 'wood_count': 1})
|
|
||||||
# print(answ)
|
|
Binary file not shown.
Before Width: | Height: | Size: 722 KiB |
File diff suppressed because it is too large
Load Diff
Binary file not shown.
@ -1,84 +0,0 @@
|
|||||||
import sys
|
|
||||||
|
|
||||||
from survival.ai.model import LinearQNetwork
|
|
||||||
from survival.ai.optimizer import Optimizer
|
|
||||||
|
|
||||||
|
|
||||||
class GeneticAlgorithm:
|
|
||||||
GAMES_PER_NETWORK = 40
|
|
||||||
PLOTS_COUNTER = 0
|
|
||||||
CURRENT_GENERATION = 1
|
|
||||||
|
|
||||||
def __init__(self, neural_system, callback):
|
|
||||||
self.callback = callback
|
|
||||||
self.logs_file = open('genetic_logs.txt', 'w')
|
|
||||||
self.original_stdout = sys.stdout
|
|
||||||
sys.stdout = self.logs_file
|
|
||||||
self.neural_system = neural_system
|
|
||||||
self.generations = 20
|
|
||||||
self.population = 10 # Minimum 5 needed to allow breeding
|
|
||||||
self.nn_params = {
|
|
||||||
'neurons': [128, 192, 256, 384, 512],
|
|
||||||
'layers': [0, 1, 2, 3],
|
|
||||||
'activation': ['relu', 'elu', 'tanh'],
|
|
||||||
'ratio': [0.0007, 0.0009, 0.0011, 0.0013, 0.0015],
|
|
||||||
'optimizer': ['RMSprop', 'Adam', 'SGD', 'Adagrad', 'Adadelta'],
|
|
||||||
}
|
|
||||||
self.optimizer = Optimizer(self.nn_params)
|
|
||||||
self.networks: list[LinearQNetwork] = self.optimizer.create_population(self.population)
|
|
||||||
self.finished = False
|
|
||||||
self.trained_counter = 0
|
|
||||||
self.iterations = 0
|
|
||||||
self.trained_generations = 0
|
|
||||||
print('Started generation 1...')
|
|
||||||
self.change_network(self.networks[0])
|
|
||||||
|
|
||||||
def train(self):
|
|
||||||
if self.iterations < GeneticAlgorithm.GAMES_PER_NETWORK - 1:
|
|
||||||
self.iterations += 1
|
|
||||||
return
|
|
||||||
self.iterations = 0
|
|
||||||
print(f'Network score: {self.optimizer.fitness(self.networks[self.trained_counter])}')
|
|
||||||
self.trained_counter += 1
|
|
||||||
|
|
||||||
# If all networks in current population were trained
|
|
||||||
if self.trained_counter >= self.population:
|
|
||||||
# Get average score in current population
|
|
||||||
avg_score = self.calculate_average_score(self.networks)
|
|
||||||
print(f'Average population score: {avg_score}.')
|
|
||||||
|
|
||||||
results_file = open('genetic_results.txt', 'w')
|
|
||||||
for network in self.networks:
|
|
||||||
results_file.write(
|
|
||||||
f'Network {network.id} params {network.network_params}. Avg score = {sum(network.scores) / len(network.scores)}\n')
|
|
||||||
results_file.close()
|
|
||||||
if self.trained_generations >= self.generations - 1:
|
|
||||||
# Sort the final population
|
|
||||||
self.networks = sorted(self.networks, key=lambda x: sum(x.scores) / len(x.scores), reverse=True)
|
|
||||||
self.finished = True
|
|
||||||
self.logs_file.close()
|
|
||||||
sys.stdout = self.original_stdout
|
|
||||||
self.callback()
|
|
||||||
return
|
|
||||||
|
|
||||||
self.trained_generations += 1
|
|
||||||
GeneticAlgorithm.CURRENT_GENERATION = self.trained_generations + 1
|
|
||||||
print(f'Started generation {GeneticAlgorithm.CURRENT_GENERATION}...')
|
|
||||||
self.networks = self.optimizer.evolve(self.networks)
|
|
||||||
self.trained_counter = 0
|
|
||||||
self.change_network(self.networks[self.trained_counter])
|
|
||||||
|
|
||||||
def calculate_average_score(self, networks):
|
|
||||||
sums = 0
|
|
||||||
lengths = 0
|
|
||||||
for network in networks:
|
|
||||||
sums += self.optimizer.fitness(network)
|
|
||||||
lengths += len(network.scores)
|
|
||||||
return sums / lengths
|
|
||||||
|
|
||||||
def change_network(self, net):
|
|
||||||
GeneticAlgorithm.PLOTS_COUNTER += 1
|
|
||||||
print(f"Changed network to {GeneticAlgorithm.PLOTS_COUNTER} {net.network_params}")
|
|
||||||
self.logs_file.flush()
|
|
||||||
net.id = GeneticAlgorithm.PLOTS_COUNTER
|
|
||||||
self.neural_system.load_model(net)
|
|
@ -1,120 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
from IPython import display
|
|
||||||
from matplotlib import pyplot as plt
|
|
||||||
|
|
||||||
from survival.settings import MUTATE_NETWORKS
|
|
||||||
from survival.ai.genetic_algorithm import GeneticAlgorithm
|
|
||||||
from survival.components.learning_component import LearningComponent
|
|
||||||
from survival.components.position_component import PositionComponent
|
|
||||||
from survival.game.enums import Direction
|
|
||||||
from survival.ai.graph_search import Action
|
|
||||||
|
|
||||||
|
|
||||||
class LearningUtils:
|
|
||||||
def __init__(self):
|
|
||||||
self.plot_scores = []
|
|
||||||
self.plot_mean_scores = []
|
|
||||||
self.total_score = 0
|
|
||||||
self.last_actions: [Action, [int, int]] = []
|
|
||||||
self.plots = 0
|
|
||||||
|
|
||||||
def add_scores(self, learning: LearningComponent, games_count: int):
|
|
||||||
self.plot_scores.append(learning.score)
|
|
||||||
self.total_score += learning.score
|
|
||||||
mean_score = self.total_score / games_count
|
|
||||||
self.plot_mean_scores.append(mean_score)
|
|
||||||
|
|
||||||
def plot(self):
|
|
||||||
# display.clear_output(wait=True)
|
|
||||||
# display.display(plt.gcf())
|
|
||||||
plt.clf()
|
|
||||||
plt.title('Results')
|
|
||||||
plt.xlabel('Number of Games')
|
|
||||||
plt.ylabel('Score')
|
|
||||||
plt.plot(self.plot_scores)
|
|
||||||
plt.plot(self.plot_mean_scores)
|
|
||||||
plt.ylim(ymin=0)
|
|
||||||
plt.text(len(self.plot_scores) - 1, self.plot_scores[-1], str(self.plot_scores[-1]))
|
|
||||||
plt.text(len(self.plot_mean_scores) - 1, self.plot_mean_scores[-1], str(self.plot_mean_scores[-1]))
|
|
||||||
self.plots += 1
|
|
||||||
if MUTATE_NETWORKS:
|
|
||||||
plt.savefig(f'model/plots/{GeneticAlgorithm.PLOTS_COUNTER}_{self.plots}.png')
|
|
||||||
else:
|
|
||||||
plt.savefig(f'model/plots/{self.plots}.png')
|
|
||||||
plt.show(block=False)
|
|
||||||
# plt.pause(.1)
|
|
||||||
|
|
||||||
def append_action(self, action: Action, pos: PositionComponent):
|
|
||||||
self.last_actions.append([action, pos.grid_position])
|
|
||||||
|
|
||||||
def check_last_actions(self, learning):
|
|
||||||
"""
|
|
||||||
Checks if all the last five actions were repeated and imposes the potential penalty.
|
|
||||||
:param learning:
|
|
||||||
"""
|
|
||||||
if len(self.last_actions) > 5:
|
|
||||||
self.last_actions.pop(0)
|
|
||||||
|
|
||||||
last_action: [Action, [int, int]] = self.last_actions[0]
|
|
||||||
last_grid_pos: [int, int] = last_action[1]
|
|
||||||
|
|
||||||
rotations = 0
|
|
||||||
collisions = 0
|
|
||||||
for action in self.last_actions:
|
|
||||||
if action != Action.MOVE:
|
|
||||||
rotations += 1
|
|
||||||
else:
|
|
||||||
current_grid_pos = action[1]
|
|
||||||
if current_grid_pos[0] == last_grid_pos[0] and current_grid_pos[1] == last_grid_pos[1]:
|
|
||||||
collisions += 1
|
|
||||||
|
|
||||||
if rotations > 4 or collisions > 4:
|
|
||||||
learning.reward -= 2
|
|
||||||
|
|
||||||
|
|
||||||
def get_state(system, player, resource):
|
|
||||||
pos: PositionComponent = system.world.component_for_entity(player, PositionComponent)
|
|
||||||
if resource is None or resource[0] is None:
|
|
||||||
res_l = False
|
|
||||||
res_r = False
|
|
||||||
res_u = False
|
|
||||||
res_d = False
|
|
||||||
else:
|
|
||||||
resource_pos: PositionComponent = system.world.component_for_entity(resource[0], PositionComponent)
|
|
||||||
res_l = resource_pos.grid_position[0] < pos.grid_position[0]
|
|
||||||
res_r = resource_pos.grid_position[0] > pos.grid_position[0]
|
|
||||||
res_u = resource_pos.grid_position[1] < pos.grid_position[1]
|
|
||||||
res_d = resource_pos.grid_position[1] > pos.grid_position[1]
|
|
||||||
|
|
||||||
dir_l = pos.direction == Direction.LEFT
|
|
||||||
dir_r = pos.direction == Direction.RIGHT
|
|
||||||
dir_u = pos.direction == Direction.UP
|
|
||||||
dir_d = pos.direction == Direction.DOWN
|
|
||||||
|
|
||||||
pos_l = [pos.grid_position[0] - 1, pos.grid_position[1]]
|
|
||||||
pos_r = [pos.grid_position[0] + 1, pos.grid_position[1]]
|
|
||||||
pos_u = [pos.grid_position[0], pos.grid_position[1] - 1]
|
|
||||||
pos_d = [pos.grid_position[0], pos.grid_position[1] + 1]
|
|
||||||
col_l = system.game_map.in_bounds(
|
|
||||||
pos_l) # self.game_map.is_colliding(pos_l) and self.game_map.get_entity(pos_l) is None
|
|
||||||
col_r = system.game_map.in_bounds(
|
|
||||||
pos_r) # self.game_map.is_colliding(pos_r) and self.game_map.get_entity(pos_r) is None
|
|
||||||
col_u = system.game_map.in_bounds(
|
|
||||||
pos_u) # self.game_map.is_colliding(pos_u) and self.game_map.get_entity(pos_u) is None
|
|
||||||
col_d = system.game_map.in_bounds(
|
|
||||||
pos_d) # self.game_map.is_colliding(pos_d) and self.game_map.get_entity(pos_d) is None
|
|
||||||
|
|
||||||
state = [
|
|
||||||
# Collision ahead
|
|
||||||
(dir_r and col_r) or (dir_l and col_l) or (dir_u and col_u) or (dir_d and col_d),
|
|
||||||
# Collision on the right
|
|
||||||
(dir_u and col_r) or (dir_r and col_d) or (dir_d and col_l) or (dir_l and col_u),
|
|
||||||
# Collision on the left
|
|
||||||
(dir_u and col_l) or (dir_l and col_d) or (dir_d and col_r) or (dir_r and col_u),
|
|
||||||
# Movement direction
|
|
||||||
dir_l, dir_r, dir_u, dir_d,
|
|
||||||
# Resource location
|
|
||||||
res_l, res_r, res_u, res_d
|
|
||||||
]
|
|
||||||
|
|
||||||
return np.array(state, dtype=int)
|
|
@ -1,110 +0,0 @@
|
|||||||
import os
|
|
||||||
import random
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from torch import nn, optim
|
|
||||||
import torch.nn.functional as functional
|
|
||||||
|
|
||||||
|
|
||||||
class LinearQNetwork(nn.Module):
|
|
||||||
TORCH_ACTiVATIONS = 'tanh'
|
|
||||||
|
|
||||||
def __init__(self, nn_params, input_size, output_size, randomize=True, params=None):
|
|
||||||
super().__init__()
|
|
||||||
self.id = 0
|
|
||||||
if params is None:
|
|
||||||
params = {}
|
|
||||||
self.params_choice = nn_params
|
|
||||||
self.scores = []
|
|
||||||
self.network_params = params
|
|
||||||
if randomize:
|
|
||||||
self.randomize()
|
|
||||||
self.layers = nn.ModuleList()
|
|
||||||
if self.network_params['layers'] == 0:
|
|
||||||
self.layers.append(nn.Linear(input_size, output_size))
|
|
||||||
else:
|
|
||||||
self.layers.append(nn.Linear(input_size, self.network_params['neurons']))
|
|
||||||
|
|
||||||
for i in range(self.network_params['layers'] - 1):
|
|
||||||
self.layers.append(nn.Linear(self.network_params['neurons'], self.network_params['neurons']))
|
|
||||||
if self.network_params['layers'] > 0:
|
|
||||||
self.ending_linear = nn.Linear(self.network_params['neurons'], output_size)
|
|
||||||
self.layers.append(self.ending_linear)
|
|
||||||
|
|
||||||
if self.network_params['activation'] in self.TORCH_ACTiVATIONS:
|
|
||||||
self.forward_func = getattr(torch, self.network_params['activation'])
|
|
||||||
else:
|
|
||||||
self.forward_func = getattr(functional, self.network_params['activation'])
|
|
||||||
|
|
||||||
def randomize(self):
|
|
||||||
"""
|
|
||||||
Sets random parameters for network.
|
|
||||||
"""
|
|
||||||
for key in self.params_choice:
|
|
||||||
self.network_params[key] = random.choice(self.params_choice[key])
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
for i in range(len(self.layers) - 1):
|
|
||||||
x = self.forward_func(self.layers[i](x))
|
|
||||||
x = self.layers[-1](x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
def save(self, file_name='model.pth'):
|
|
||||||
model_directory = 'model'
|
|
||||||
if not os.path.exists(model_directory):
|
|
||||||
os.makedirs(model_directory)
|
|
||||||
|
|
||||||
file_path = os.path.join(model_directory, file_name)
|
|
||||||
torch.save(self.state_dict(), file_path)
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def load(params, input_size, output_size, file_name='model.pth'):
|
|
||||||
model_directory = 'model'
|
|
||||||
file_path = os.path.join(model_directory, file_name)
|
|
||||||
if os.path.isfile(file_path):
|
|
||||||
model = LinearQNetwork(params, input_size, output_size, True)
|
|
||||||
model.load_state_dict(torch.load(file_path))
|
|
||||||
model.eval()
|
|
||||||
return model
|
|
||||||
raise Exception(f'Could not find file {file_path}.')
|
|
||||||
|
|
||||||
|
|
||||||
class QTrainer:
|
|
||||||
def __init__(self, model, lr, gamma, optimizer):
|
|
||||||
self.model = model
|
|
||||||
self.lr = lr
|
|
||||||
self.gamma = gamma
|
|
||||||
self.optimizer = getattr(optim, optimizer)(model.parameters(), lr=self.lr)
|
|
||||||
# self.optimizer = optim.Adam(model.parameters(), lr=self.lr)
|
|
||||||
self.criterion = nn.MSELoss() # Mean squared error
|
|
||||||
|
|
||||||
def train_step(self, state, action, reward, next_state, done):
|
|
||||||
state = torch.tensor(state, dtype=torch.float)
|
|
||||||
next_state = torch.tensor(next_state, dtype=torch.float)
|
|
||||||
action = torch.tensor(action, dtype=torch.long)
|
|
||||||
reward = torch.tensor(reward, dtype=torch.float)
|
|
||||||
|
|
||||||
if len(state.shape) == 1:
|
|
||||||
# reshape the state to make its values an (n, x) tuple
|
|
||||||
state = torch.unsqueeze(state, 0)
|
|
||||||
next_state = torch.unsqueeze(next_state, 0)
|
|
||||||
action = torch.unsqueeze(action, 0)
|
|
||||||
reward = torch.unsqueeze(reward, 0)
|
|
||||||
done = (done,)
|
|
||||||
|
|
||||||
# Prediction based on simplified Bellman's equation
|
|
||||||
# Predict Q values for current state
|
|
||||||
prediction = self.model(state)
|
|
||||||
target = prediction.clone()
|
|
||||||
for idx in range(len(done)):
|
|
||||||
Q = reward[idx]
|
|
||||||
if not done[idx]:
|
|
||||||
Q = reward[idx] + self.gamma * torch.max(self.model(next_state[idx]))
|
|
||||||
# set the target of the maximum value of the action to Q
|
|
||||||
target[idx][torch.argmax(action).item()] = Q
|
|
||||||
# Apply the loss function
|
|
||||||
self.optimizer.zero_grad()
|
|
||||||
loss = self.criterion(target, prediction)
|
|
||||||
loss.backward()
|
|
||||||
|
|
||||||
self.optimizer.step()
|
|
@ -1,144 +0,0 @@
|
|||||||
from functools import reduce
|
|
||||||
from operator import add
|
|
||||||
import random
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
from survival.ai.model import LinearQNetwork
|
|
||||||
from survival.settings import NEURAL_INPUT_SIZE, NEURAL_OUTPUT_SIZE
|
|
||||||
|
|
||||||
|
|
||||||
class Optimizer:
|
|
||||||
def __init__(self, params, retain=0.4,
|
|
||||||
random_select=0.1, mutation_chance=0.2):
|
|
||||||
self.mutation_chance = mutation_chance
|
|
||||||
self.random_select = random_select
|
|
||||||
self.retain = retain
|
|
||||||
self.nn_params = params
|
|
||||||
|
|
||||||
def create_population(self, count: int):
|
|
||||||
"""
|
|
||||||
Creates 'count' networks from random parameters.
|
|
||||||
:param count:
|
|
||||||
:return:
|
|
||||||
"""
|
|
||||||
pop = []
|
|
||||||
for _ in range(0, count):
|
|
||||||
# Create a random network.
|
|
||||||
network = LinearQNetwork(self.nn_params, NEURAL_INPUT_SIZE, NEURAL_OUTPUT_SIZE)
|
|
||||||
# Add network to the population.
|
|
||||||
pop.append(network)
|
|
||||||
|
|
||||||
return pop
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def fitness(network: LinearQNetwork):
|
|
||||||
return sum(network.scores) / len(network.scores)
|
|
||||||
|
|
||||||
def grade(self, pop: List[LinearQNetwork]) -> float:
|
|
||||||
"""
|
|
||||||
Finds average fitness for given population.
|
|
||||||
"""
|
|
||||||
summed = reduce(add, (self.fitness(network) for network in pop))
|
|
||||||
return summed / float((len(pop)))
|
|
||||||
|
|
||||||
def breed(self, parent_one, parent_two):
|
|
||||||
"""
|
|
||||||
Creates a new network from given parents.
|
|
||||||
:param parent_one:
|
|
||||||
:param parent_two:
|
|
||||||
:return:
|
|
||||||
"""
|
|
||||||
children = []
|
|
||||||
for _ in range(2):
|
|
||||||
|
|
||||||
child = {}
|
|
||||||
|
|
||||||
# Loop through the parameters and pick params for the kid.
|
|
||||||
for param in self.nn_params:
|
|
||||||
child[param] = random.choice(
|
|
||||||
[parent_one.network_params[param], parent_two.network_params[param]]
|
|
||||||
)
|
|
||||||
|
|
||||||
# Create new network object.
|
|
||||||
network = LinearQNetwork(self.nn_params, NEURAL_INPUT_SIZE, NEURAL_OUTPUT_SIZE)
|
|
||||||
network.network_params = child
|
|
||||||
|
|
||||||
children.append(network)
|
|
||||||
|
|
||||||
return children
|
|
||||||
|
|
||||||
def mutate(self, network: LinearQNetwork):
|
|
||||||
"""
|
|
||||||
Randomly mutates one parameter of the given network.
|
|
||||||
:param network:
|
|
||||||
:return:
|
|
||||||
"""
|
|
||||||
mutation = random.choice(list(self.nn_params.keys()))
|
|
||||||
|
|
||||||
# Mutate one of the params.
|
|
||||||
network.network_params[mutation] = random.choice(self.nn_params[mutation])
|
|
||||||
|
|
||||||
return network
|
|
||||||
|
|
||||||
def evolve(self, pop):
|
|
||||||
"""
|
|
||||||
Evolves a population of networks.
|
|
||||||
"""
|
|
||||||
# Get scores for each network.
|
|
||||||
scores = [(self.fitness(network), network) for network in pop]
|
|
||||||
|
|
||||||
# Sort the scores.
|
|
||||||
scores = [x[1] for x in sorted(scores, key=lambda x: x[0], reverse=True)]
|
|
||||||
|
|
||||||
# Get the number we want to keep for the next gen.
|
|
||||||
retain_length = int(len(scores) * self.retain)
|
|
||||||
|
|
||||||
# Keep the best networks as parents for next generation.
|
|
||||||
parents = scores[:retain_length]
|
|
||||||
|
|
||||||
# Keep some other networks
|
|
||||||
for network in scores[retain_length:]:
|
|
||||||
if self.random_select > random.random():
|
|
||||||
parents.append(network)
|
|
||||||
|
|
||||||
# Reset kept networks
|
|
||||||
reseted_networks = []
|
|
||||||
for network in parents:
|
|
||||||
net = LinearQNetwork(self.nn_params, NEURAL_INPUT_SIZE, NEURAL_OUTPUT_SIZE)
|
|
||||||
net.network_params = network.network_params
|
|
||||||
reseted_networks.append(net)
|
|
||||||
|
|
||||||
parents = reseted_networks
|
|
||||||
|
|
||||||
# Randomly mutate some of the networks.
|
|
||||||
for parent in parents:
|
|
||||||
if self.mutation_chance > random.random():
|
|
||||||
parent = self.mutate(parent)
|
|
||||||
|
|
||||||
# Determine the number of freed spots for the next generation.
|
|
||||||
parents_length = len(parents)
|
|
||||||
desired_length = len(pop) - parents_length
|
|
||||||
children = []
|
|
||||||
|
|
||||||
# Fill missing spots with new children.
|
|
||||||
while len(children) < desired_length:
|
|
||||||
# Get random parents.
|
|
||||||
p1 = random.randint(0, parents_length - 1)
|
|
||||||
p2 = random.randint(0, parents_length - 1)
|
|
||||||
|
|
||||||
# Ensure they are not the same network.
|
|
||||||
if p1 != p2:
|
|
||||||
p1 = parents[p1]
|
|
||||||
p2 = parents[p2]
|
|
||||||
|
|
||||||
# Breed networks.
|
|
||||||
babies = self.breed(p1, p2)
|
|
||||||
|
|
||||||
# Add children one at a time.
|
|
||||||
for baby in babies:
|
|
||||||
# Don't grow larger than the desired length.
|
|
||||||
if len(children) < desired_length:
|
|
||||||
children.append(baby)
|
|
||||||
|
|
||||||
parents.extend(children)
|
|
||||||
return parents
|
|
@ -1,93 +0,0 @@
|
|||||||
import torch
|
|
||||||
import pygad
|
|
||||||
from pygad.torchga import torchga
|
|
||||||
|
|
||||||
|
|
||||||
def fitness_func(solution, sol_idx):
|
|
||||||
global data_inputs, data_outputs, torch_ga, model, loss_function
|
|
||||||
|
|
||||||
model_weights_dict = torchga.model_weights_as_dict(model=model,
|
|
||||||
weights_vector=solution)
|
|
||||||
|
|
||||||
# Use the current solution as the model parameters.
|
|
||||||
model.load_state_dict(model_weights_dict)
|
|
||||||
|
|
||||||
predictions = model(data_inputs)
|
|
||||||
abs_error = loss_function(predictions, data_outputs).detach().numpy() + 0.00000001
|
|
||||||
|
|
||||||
solution_fitness = 1.0 / abs_error
|
|
||||||
|
|
||||||
return solution_fitness
|
|
||||||
|
|
||||||
def callback_generation(ga_instance):
|
|
||||||
print("Generation = {generation}".format(generation=ga_instance.generations_completed))
|
|
||||||
print("Fitness = {fitness}".format(fitness=ga_instance.best_solution()[1]))
|
|
||||||
|
|
||||||
# Create the PyTorch model.
|
|
||||||
input_layer = torch.nn.Linear(3, 2)
|
|
||||||
relu_layer = torch.nn.ReLU()
|
|
||||||
output_layer = torch.nn.Linear(2, 1)
|
|
||||||
|
|
||||||
model = torch.nn.Sequential(input_layer,
|
|
||||||
relu_layer,
|
|
||||||
output_layer)
|
|
||||||
# print(model)
|
|
||||||
|
|
||||||
# Create an instance of the pygad.torchga.TorchGA class to build the initial population.
|
|
||||||
torch_ga = torchga.TorchGA(model=model,
|
|
||||||
num_solutions=10)
|
|
||||||
|
|
||||||
loss_function = torch.nn.L1Loss()
|
|
||||||
|
|
||||||
# Data inputs
|
|
||||||
data_inputs = torch.tensor([[0.02, 0.1, 0.15],
|
|
||||||
[0.7, 0.6, 0.8],
|
|
||||||
[1.5, 1.2, 1.7],
|
|
||||||
[3.2, 2.9, 3.1]])
|
|
||||||
|
|
||||||
# Data outputs
|
|
||||||
data_outputs = torch.tensor([[0.1],
|
|
||||||
[0.6],
|
|
||||||
[1.3],
|
|
||||||
[2.5]])
|
|
||||||
|
|
||||||
# Prepare the PyGAD parameters. Check the documentation for more information: https://pygad.readthedocs.io/en/latest/README_pygad_ReadTheDocs.html#pygad-ga-class
|
|
||||||
num_generations = 250 # Number of generations.
|
|
||||||
num_parents_mating = 5 # Number of solutions to be selected as parents in the mating pool.
|
|
||||||
initial_population = torch_ga.population_weights # Initial population of network weights
|
|
||||||
parent_selection_type = "sss" # Type of parent selection.
|
|
||||||
crossover_type = "single_point" # Type of the crossover operator.
|
|
||||||
mutation_type = "random" # Type of the mutation operator.
|
|
||||||
mutation_percent_genes = 10 # Percentage of genes to mutate. This parameter has no action if the parameter mutation_num_genes exists.
|
|
||||||
keep_parents = -1 # Number of parents to keep in the next population. -1 means keep all parents and 0 means keep nothing.
|
|
||||||
|
|
||||||
ga_instance = pygad.GA(num_generations=num_generations,
|
|
||||||
num_parents_mating=num_parents_mating,
|
|
||||||
initial_population=initial_population,
|
|
||||||
fitness_func=fitness_func,
|
|
||||||
parent_selection_type=parent_selection_type,
|
|
||||||
crossover_type=crossover_type,
|
|
||||||
mutation_type=mutation_type,
|
|
||||||
mutation_percent_genes=mutation_percent_genes,
|
|
||||||
keep_parents=keep_parents,
|
|
||||||
on_generation=callback_generation)
|
|
||||||
|
|
||||||
ga_instance.run()
|
|
||||||
|
|
||||||
# After the generations complete, some plots are showed that summarize how the outputs/fitness values evolve over generations.
|
|
||||||
ga_instance.plot_result(title="PyGAD & PyTorch - Iteration vs. Fitness", linewidth=4)
|
|
||||||
|
|
||||||
# Returning the details of the best solution.
|
|
||||||
solution, solution_fitness, solution_idx = ga_instance.best_solution()
|
|
||||||
print("Fitness value of the best solution = {solution_fitness}".format(solution_fitness=solution_fitness))
|
|
||||||
print("Index of the best solution : {solution_idx}".format(solution_idx=solution_idx))
|
|
||||||
|
|
||||||
# Fetch the parameters of the best solution.
|
|
||||||
best_solution_weights = torchga.model_weights_as_dict(model=model,
|
|
||||||
weights_vector=solution)
|
|
||||||
model.load_state_dict(best_solution_weights)
|
|
||||||
predictions = model(data_inputs)
|
|
||||||
print("Predictions : \n", predictions.detach().numpy())
|
|
||||||
|
|
||||||
abs_error = loss_function(predictions, data_outputs)
|
|
||||||
print("Absolute Error : ", abs_error.detach().numpy())
|
|
@ -1,4 +1,4 @@
|
|||||||
from survival.game.biomes.biome_preset import BiomePreset
|
from survival.biomes.biome_preset import BiomePreset
|
||||||
|
|
||||||
|
|
||||||
class BiomeData:
|
class BiomeData:
|
@ -1,11 +1,10 @@
|
|||||||
import random
|
import random
|
||||||
from typing import List
|
|
||||||
|
|
||||||
from survival.game.tile import Tile
|
from survival.tile import Tile
|
||||||
|
|
||||||
|
|
||||||
class BiomePreset:
|
class BiomePreset:
|
||||||
def __init__(self, name, min_height: float, min_moisture: float, min_heat: float, tiles: List[Tile]):
|
def __init__(self, name, min_height: float, min_moisture: float, min_heat: float, tiles: list[Tile]):
|
||||||
self.name = name
|
self.name = name
|
||||||
self.min_height = min_height
|
self.min_height = min_height
|
||||||
self.min_moisture = min_moisture
|
self.min_moisture = min_moisture
|
@ -1,6 +1,6 @@
|
|||||||
from pygame.rect import Rect
|
from pygame.rect import Rect
|
||||||
|
|
||||||
from survival.settings import SCREEN_WIDTH, SCREEN_HEIGHT
|
from survival import SCREEN_WIDTH, SCREEN_HEIGHT
|
||||||
|
|
||||||
|
|
||||||
class Camera:
|
class Camera:
|
@ -1,6 +0,0 @@
|
|||||||
from survival.generators.resource_type import ResourceType
|
|
||||||
|
|
||||||
|
|
||||||
class ConsumptionComponent:
|
|
||||||
def __init__(self):
|
|
||||||
self.status = {ResourceType.FOOD: 1, ResourceType.WOOD: 1, ResourceType.WATER: 1}
|
|
@ -1,4 +1,4 @@
|
|||||||
from survival.game.enums import Direction
|
from survival.enums import Direction
|
||||||
|
|
||||||
|
|
||||||
class DirectionChangeComponent:
|
class DirectionChangeComponent:
|
||||||
|
@ -1,9 +1,9 @@
|
|||||||
class InventoryComponent:
|
class InventoryComponent:
|
||||||
def __init__(self, maxitems=100):
|
def __init__(self, maxitems):
|
||||||
self.maxitems = maxitems
|
self.maxitems = maxitems
|
||||||
self.items = {}
|
self.items = {}
|
||||||
|
|
||||||
def add_item(self, item, count):
|
def addItem(self, item, count):
|
||||||
if item not in self.items:
|
if item not in self.items:
|
||||||
self.items[item] = count
|
self.items[item] = count
|
||||||
else:
|
else:
|
||||||
@ -11,23 +11,14 @@ class InventoryComponent:
|
|||||||
if self.items[item] > self.maxitems:
|
if self.items[item] > self.maxitems:
|
||||||
self.items[item] = self.maxitems
|
self.items[item] = self.maxitems
|
||||||
|
|
||||||
def remove_item(self, item, count):
|
def removeItem(self, item, count):
|
||||||
if item in self.items:
|
if self.items:
|
||||||
self.items[item] = self.items[item] - count
|
self.items[item] = self.items[item] - count
|
||||||
if self.items[item] < 0:
|
if self.items[item] < 0:
|
||||||
self.items[item] = 0
|
self.items[item] = 0
|
||||||
|
|
||||||
def count(self, item):
|
def hasItem(self, item):
|
||||||
return self.items[item]
|
if self.items[item] != 0:
|
||||||
|
return True
|
||||||
def has_item(self, item):
|
else:
|
||||||
return item in self.items and self.items[item] != 0
|
return False
|
||||||
|
|
||||||
def total_items_count(self):
|
|
||||||
total = 0
|
|
||||||
for item, value in self.items.items():
|
|
||||||
total += value
|
|
||||||
return total
|
|
||||||
|
|
||||||
def clear(self):
|
|
||||||
self.items = {}
|
|
||||||
|
@ -1,32 +0,0 @@
|
|||||||
from survival.components.time_component import TimeComponent
|
|
||||||
|
|
||||||
|
|
||||||
class LearningComponent:
|
|
||||||
def __init__(self):
|
|
||||||
self.made_step = False
|
|
||||||
self.old_state = None
|
|
||||||
self.action = None
|
|
||||||
self.resource = None
|
|
||||||
|
|
||||||
self.reward = 0
|
|
||||||
self.done = False
|
|
||||||
self.score = 0
|
|
||||||
self.record = 0
|
|
||||||
|
|
||||||
def load_step(self, old_state, action, resource):
|
|
||||||
self.old_state = old_state
|
|
||||||
self.action = action
|
|
||||||
if resource is None:
|
|
||||||
self.resource = None
|
|
||||||
else:
|
|
||||||
self.resource = resource
|
|
||||||
self.made_step = True
|
|
||||||
|
|
||||||
def reset(self):
|
|
||||||
self.made_step = False
|
|
||||||
self.old_state = None
|
|
||||||
self.action = None
|
|
||||||
self.resource = None
|
|
||||||
|
|
||||||
self.reward = 0
|
|
||||||
self.done = False
|
|
@ -1,15 +0,0 @@
|
|||||||
from functools import partial
|
|
||||||
|
|
||||||
|
|
||||||
class OnCollisionComponent:
|
|
||||||
def __init__(self, callbacks=None):
|
|
||||||
if callbacks is None:
|
|
||||||
callbacks = []
|
|
||||||
self.callbacks = callbacks
|
|
||||||
|
|
||||||
def call_all(self):
|
|
||||||
for func in self.callbacks:
|
|
||||||
func()
|
|
||||||
|
|
||||||
def add_callback(self, fn, **kwargs):
|
|
||||||
self.callbacks.append(partial(fn, **kwargs))
|
|
@ -1,4 +1,4 @@
|
|||||||
from survival.game.enums import Direction
|
from survival.enums import Direction
|
||||||
|
|
||||||
|
|
||||||
class PositionComponent:
|
class PositionComponent:
|
||||||
|
@ -1,29 +0,0 @@
|
|||||||
import random
|
|
||||||
|
|
||||||
from survival.generators.resource_type import ResourceType
|
|
||||||
|
|
||||||
|
|
||||||
class ResourceComponent:
|
|
||||||
def __init__(self, resource_type):
|
|
||||||
self.resource_type = resource_type
|
|
||||||
w, e, t = self.generate_attributes(resource_type)
|
|
||||||
self.weight = w
|
|
||||||
self.eatable = e
|
|
||||||
self.toughness = t
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def generate_attributes(resource_type):
|
|
||||||
if resource_type == ResourceType.WOOD:
|
|
||||||
weight = random.randint(10, 15)
|
|
||||||
eatable = False
|
|
||||||
toughness = random.randint(10, 15)
|
|
||||||
elif resource_type == ResourceType.WATER:
|
|
||||||
weight = random.randint(1, 2)
|
|
||||||
eatable = True
|
|
||||||
toughness = 0
|
|
||||||
else:
|
|
||||||
weight = random.randint(1, 7)
|
|
||||||
eatable = True
|
|
||||||
toughness = random.randint(2, 5)
|
|
||||||
|
|
||||||
return weight, eatable, toughness
|
|
@ -1,4 +1,4 @@
|
|||||||
from survival.game.image import Image
|
from survival.image import Image
|
||||||
|
|
||||||
|
|
||||||
class SpriteComponent:
|
class SpriteComponent:
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
class TimeComponent:
|
class TimeComponent:
|
||||||
def __init__(self, minute=0, hour=0, day=0, timer=0):
|
def __init__(self, minute, hour, day, timer):
|
||||||
self.minute = minute
|
self.minute = minute
|
||||||
self.hour = hour
|
self.hour = hour
|
||||||
self.day = day
|
self.day = day
|
||||||
@ -16,17 +16,5 @@ class TimeComponent:
|
|||||||
self.hour = temp2
|
self.hour = temp2
|
||||||
self.minute = temp
|
self.minute = temp
|
||||||
|
|
||||||
def total_minutes(self):
|
|
||||||
return self.minute + self.hour * 60 + self.day * 1440
|
|
||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
return f'Day {self.day}, {self.hour}:{self.minute}'
|
return f'Day {self.day}, {self.hour}:{self.minute}'
|
||||||
|
|
||||||
def __eq__(self, other):
|
|
||||||
return self.total_minutes() == other.total_minutes()
|
|
||||||
|
|
||||||
def __gt__(self, other):
|
|
||||||
return self.total_minutes() > other.total_minutes()
|
|
||||||
|
|
||||||
def __lt__(self, other):
|
|
||||||
return self.total_minutes() < other.total_minutes()
|
|
||||||
|
@ -1,34 +0,0 @@
|
|||||||
from pygame import Surface
|
|
||||||
|
|
||||||
from survival.settings import AGENT_VISION_RANGE, SCREEN_WIDTH, SCREEN_HEIGHT
|
|
||||||
|
|
||||||
|
|
||||||
class VisionComponent:
|
|
||||||
def __init__(self):
|
|
||||||
self.agent_vision = AGENT_VISION_RANGE * 32 * 2
|
|
||||||
self.width = SCREEN_WIDTH * 2
|
|
||||||
self.height = SCREEN_HEIGHT * 2
|
|
||||||
self.surface_l = Surface(((self.width - self.agent_vision) / 2, self.height))
|
|
||||||
self.surface_r = Surface(((self.width - self.agent_vision) / 2, self.height))
|
|
||||||
self.surface_t = Surface((self.agent_vision, (self.height - self.agent_vision) / 2))
|
|
||||||
self.surface_b = Surface((self.agent_vision, (self.height - self.agent_vision) / 2))
|
|
||||||
self.surface_l.fill((0, 0, 0))
|
|
||||||
self.surface_l.set_alpha(200)
|
|
||||||
self.surface_r.fill((0, 0, 0))
|
|
||||||
self.surface_r.set_alpha(200)
|
|
||||||
self.surface_t.fill((0, 0, 0))
|
|
||||||
self.surface_t.set_alpha(200)
|
|
||||||
self.surface_b.fill((0, 0, 0))
|
|
||||||
self.surface_b.set_alpha(200)
|
|
||||||
self.l_pos = (0, 0)
|
|
||||||
self.r_pos = (0, 0)
|
|
||||||
self.t_pos = (0, 0)
|
|
||||||
self.b_pos = (0, 0)
|
|
||||||
|
|
||||||
def update_positions(self, position: [int, int]):
|
|
||||||
new_position = (position[0] - self.width / 2 + 16, position[1] - self.height / 2 + 16)
|
|
||||||
self.l_pos = new_position
|
|
||||||
self.r_pos = (new_position[0] + (self.width + self.agent_vision) / 2, new_position[1])
|
|
||||||
self.t_pos = (new_position[0] + (self.width - self.agent_vision) / 2, new_position[1])
|
|
||||||
self.b_pos = (new_position[0] + (self.width - self.agent_vision) / 2,
|
|
||||||
new_position[1] + (self.height + self.agent_vision) / 2)
|
|
@ -18,8 +18,5 @@ class EntityLayer:
|
|||||||
def remove_entity(self, pos):
|
def remove_entity(self, pos):
|
||||||
self.tiles[pos[1]][pos[0]] = None
|
self.tiles[pos[1]][pos[0]] = None
|
||||||
|
|
||||||
def get_entity(self, pos):
|
|
||||||
return self.tiles[pos[1]][pos[0]]
|
|
||||||
|
|
||||||
def is_colliding(self, pos):
|
def is_colliding(self, pos):
|
||||||
return self.tiles[pos[1]][pos[0]] is not None
|
return self.tiles[pos[1]][pos[0]] is not None
|
@ -28,9 +28,6 @@ class Processor:
|
|||||||
def process(self, *args, **kwargs):
|
def process(self, *args, **kwargs):
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
def reset(self, *args, **kwargs):
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
class World:
|
class World:
|
||||||
"""A World object keeps track of all Entities, Components, and Processors.
|
"""A World object keeps track of all Entities, Components, and Processors.
|
||||||
@ -49,14 +46,6 @@ class World:
|
|||||||
self.process_times = {}
|
self.process_times = {}
|
||||||
self._process = self._timed_process
|
self._process = self._timed_process
|
||||||
|
|
||||||
@property
|
|
||||||
def processors(self):
|
|
||||||
return self._processors
|
|
||||||
|
|
||||||
@property
|
|
||||||
def entities(self):
|
|
||||||
return self._entities
|
|
||||||
|
|
||||||
def clear_cache(self) -> None:
|
def clear_cache(self) -> None:
|
||||||
self.get_component.cache_clear()
|
self.get_component.cache_clear()
|
||||||
self.get_components.cache_clear()
|
self.get_components.cache_clear()
|
||||||
|
@ -1,82 +0,0 @@
|
|||||||
from survival.components.position_component import PositionComponent
|
|
||||||
from survival.components.resource_component import ResourceComponent
|
|
||||||
from survival.game.entity_layer import EntityLayer
|
|
||||||
from survival.esper import World
|
|
||||||
from survival.ai.graph_search import graph_search
|
|
||||||
from survival.settings import AGENT_VISION_RANGE
|
|
||||||
from survival.game.tile_layer import TileLayer
|
|
||||||
|
|
||||||
|
|
||||||
class GameMap:
|
|
||||||
def __init__(self, width, height):
|
|
||||||
self.width = width
|
|
||||||
self.height = height
|
|
||||||
self.tile_layer = TileLayer(width, height)
|
|
||||||
self.entity_layer = EntityLayer(width, height)
|
|
||||||
|
|
||||||
def draw(self, camera):
|
|
||||||
visible_area = camera.get_visible_area()
|
|
||||||
self.tile_layer.draw(camera, visible_area)
|
|
||||||
|
|
||||||
def add_entity(self, entity, pos):
|
|
||||||
self.entity_layer.add_entity(entity, pos.grid_position)
|
|
||||||
|
|
||||||
def move_entity(self, from_pos, to_pos):
|
|
||||||
self.entity_layer.move_entity(from_pos, to_pos)
|
|
||||||
|
|
||||||
def remove_entity(self, pos):
|
|
||||||
self.entity_layer.remove_entity(pos)
|
|
||||||
|
|
||||||
def get_entity(self, pos) -> int:
|
|
||||||
if not self.in_bounds(pos):
|
|
||||||
return None
|
|
||||||
return self.entity_layer.get_entity(pos)
|
|
||||||
|
|
||||||
def is_colliding(self, pos):
|
|
||||||
return not self.in_bounds(pos) or self.entity_layer.is_colliding(pos)
|
|
||||||
|
|
||||||
def in_bounds(self, pos):
|
|
||||||
return 0 <= pos[0] < self.width and 0 <= pos[1] < self.height
|
|
||||||
|
|
||||||
def get_cost(self, pos):
|
|
||||||
return self.tile_layer.get_cost(pos)
|
|
||||||
|
|
||||||
def find_nearby_resources(self, world: World, player: int, position: PositionComponent, search_range: int = 5):
|
|
||||||
entity_position = position.grid_position
|
|
||||||
|
|
||||||
x_range = [entity_position[0] - search_range, entity_position[0] + search_range]
|
|
||||||
y_range = [entity_position[1] - search_range, entity_position[1] + search_range]
|
|
||||||
|
|
||||||
# Check if range is not out of map bounds
|
|
||||||
if x_range[0] < 0:
|
|
||||||
x_range[0] = 0
|
|
||||||
if x_range[1] >= self.width:
|
|
||||||
x_range[1] = self.width - 1
|
|
||||||
if y_range[0] < 0:
|
|
||||||
y_range[0] = 0
|
|
||||||
if y_range[1] >= self.height:
|
|
||||||
y_range[1] = self.height - 1
|
|
||||||
|
|
||||||
found_resources = []
|
|
||||||
|
|
||||||
for y in range(y_range[0], y_range[1]):
|
|
||||||
for x in range(x_range[0], x_range[1]):
|
|
||||||
ent = self.get_entity([x, y])
|
|
||||||
if ent == player:
|
|
||||||
continue
|
|
||||||
if ent is not None and world.has_component(ent, ResourceComponent):
|
|
||||||
res_position = world.component_for_entity(ent, PositionComponent).grid_position
|
|
||||||
path, cost = graph_search(self, position, tuple(res_position), world)
|
|
||||||
found_resources.append([ent, path, cost])
|
|
||||||
|
|
||||||
return found_resources
|
|
||||||
|
|
||||||
def find_nearest_resource(self, world: World, player: int, position: PositionComponent):
|
|
||||||
resources = self.find_nearby_resources(world, player, position, AGENT_VISION_RANGE)
|
|
||||||
|
|
||||||
nearest = None
|
|
||||||
for resource in resources:
|
|
||||||
if nearest is None or resource[2] < nearest[2]:
|
|
||||||
nearest = resource
|
|
||||||
|
|
||||||
return nearest
|
|
@ -1,47 +0,0 @@
|
|||||||
import pygame.font
|
|
||||||
|
|
||||||
from survival.ai.genetic_algorithm import GeneticAlgorithm
|
|
||||||
from survival.settings import MUTATE_NETWORKS, SCREEN_HEIGHT, SCREEN_WIDTH
|
|
||||||
from survival.components.inventory_component import InventoryComponent
|
|
||||||
from survival.generators.resource_type import ResourceType
|
|
||||||
from survival.game.image import Image
|
|
||||||
|
|
||||||
|
|
||||||
class UserInterface:
|
|
||||||
def __init__(self, window):
|
|
||||||
self.width = SCREEN_WIDTH
|
|
||||||
self.height = SCREEN_HEIGHT
|
|
||||||
self.window = window
|
|
||||||
self.pos = (self.width - 240, 50)
|
|
||||||
self.scale = 2
|
|
||||||
self.inventory: InventoryComponent = None
|
|
||||||
self.images = {
|
|
||||||
ResourceType.FOOD: Image('apple.png', self.pos, self.scale),
|
|
||||||
ResourceType.WATER: Image('water.png', self.pos, self.scale),
|
|
||||||
ResourceType.WOOD: Image('wood.png', self.pos, self.scale)
|
|
||||||
}
|
|
||||||
i = 0
|
|
||||||
for key, value in self.images.items():
|
|
||||||
self.images[key].pos = (self.pos[0] + i * 32 * self.scale + 8 * i, self.pos[1])
|
|
||||||
i += 1
|
|
||||||
self.slot_image = Image('ui.png', self.pos, scale=2)
|
|
||||||
self.font = pygame.font.SysFont('Comic Sans MS', 20)
|
|
||||||
self.initialized = False
|
|
||||||
|
|
||||||
def load_inventory(self, inventory: InventoryComponent):
|
|
||||||
self.inventory = inventory
|
|
||||||
self.initialized = True
|
|
||||||
|
|
||||||
def update(self):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def draw(self):
|
|
||||||
for key, image in self.images.items():
|
|
||||||
items_count = self.inventory.items[key] if self.inventory.has_item(key) else 0
|
|
||||||
|
|
||||||
self.slot_image.pos = image.pos
|
|
||||||
self.slot_image.draw_static(self.window)
|
|
||||||
image.draw_static(self.window)
|
|
||||||
|
|
||||||
textsurface = self.font.render(str(items_count), False, (255, 255, 255))
|
|
||||||
self.window.blit(textsurface, (image.pos[0] + 48, image.pos[1] + 36))
|
|
29
survival/game_map.py
Normal file
29
survival/game_map.py
Normal file
@ -0,0 +1,29 @@
|
|||||||
|
from survival.entity_layer import EntityLayer
|
||||||
|
from survival.tile_layer import TileLayer
|
||||||
|
|
||||||
|
|
||||||
|
class GameMap:
|
||||||
|
def __init__(self, width, height):
|
||||||
|
self.width = width
|
||||||
|
self.height = height
|
||||||
|
self.tile_layer = TileLayer(width, height)
|
||||||
|
self.entity_layer = EntityLayer(width, height)
|
||||||
|
|
||||||
|
def draw(self, camera):
|
||||||
|
visible_area = camera.get_visible_area()
|
||||||
|
self.tile_layer.draw(camera, visible_area)
|
||||||
|
|
||||||
|
def add_entity(self, entity, pos):
|
||||||
|
self.entity_layer.add_entity(entity, pos.grid_position)
|
||||||
|
|
||||||
|
def move_entity(self, from_pos, to_pos):
|
||||||
|
self.entity_layer.move_entity(from_pos, to_pos)
|
||||||
|
|
||||||
|
def remove_entity(self, pos):
|
||||||
|
self.entity_layer.remove_entity(pos)
|
||||||
|
|
||||||
|
def is_colliding(self, pos):
|
||||||
|
return pos[0] < 0 or pos[0] >= self.width or pos[1] < 0 or pos[1] >= self.height or self.entity_layer.is_colliding(pos)
|
||||||
|
|
||||||
|
def get_cost(self, pos):
|
||||||
|
return self.tile_layer.get_cost(pos)
|
@ -5,25 +5,14 @@ from survival.components.sprite_component import SpriteComponent
|
|||||||
|
|
||||||
|
|
||||||
class BuildingGenerator:
|
class BuildingGenerator:
|
||||||
def create_home(self, world, game_map, position = [10,10]):
|
def create_home(self, world, game_map):
|
||||||
home = world.create_entity()
|
home = world.create_entity()
|
||||||
home_pos = PositionComponent([position[0]*32, position[1]*32], position)
|
pos = PositionComponent([32, 32], [32, 32])
|
||||||
world.add_component(home, home_pos)
|
world.add_component(home, pos)
|
||||||
game_map.add_entity(home, home_pos)
|
|
||||||
world.add_component(home, InventoryComponent())
|
world.add_component(home, InventoryComponent())
|
||||||
sprite = SpriteComponent('home.png')
|
|
||||||
|
game_map.add_entity(home, pos)
|
||||||
|
sprite = SpriteComponent('stone.png')
|
||||||
|
sprite.set_scale(2)
|
||||||
world.add_component(home, sprite)
|
world.add_component(home, sprite)
|
||||||
world.add_component(home, CollisionComponent())
|
world.add_component(home, CollisionComponent())
|
||||||
|
|
||||||
for x_pos in [-1, 1]:
|
|
||||||
chest = world.create_entity()
|
|
||||||
chest_pos = PositionComponent(
|
|
||||||
[(position[0]+x_pos)*32, position[1]*32],
|
|
||||||
[position[0]+x_pos, position[1]]
|
|
||||||
)
|
|
||||||
world.add_component(chest, chest_pos)
|
|
||||||
game_map.add_entity(chest, chest_pos)
|
|
||||||
world.add_component(chest, InventoryComponent())
|
|
||||||
sprite = SpriteComponent('chest.png')
|
|
||||||
world.add_component(chest, sprite)
|
|
||||||
world.add_component(chest, CollisionComponent())
|
|
||||||
|
@ -1,41 +1,25 @@
|
|||||||
from survival.components.on_collision_component import OnCollisionComponent
|
|
||||||
from survival.components.camera_target_component import CameraTargetComponent
|
from survival.components.camera_target_component import CameraTargetComponent
|
||||||
from survival.components.consumption_component import ConsumptionComponent
|
|
||||||
from survival.components.input_component import InputComponent
|
from survival.components.input_component import InputComponent
|
||||||
from survival.components.inventory_component import InventoryComponent
|
|
||||||
from survival.components.learning_component import LearningComponent
|
|
||||||
from survival.components.movement_component import MovementComponent
|
from survival.components.movement_component import MovementComponent
|
||||||
from survival.components.position_component import PositionComponent
|
from survival.components.position_component import PositionComponent
|
||||||
from survival.components.sprite_component import SpriteComponent
|
from survival.components.sprite_component import SpriteComponent
|
||||||
from survival.components.time_component import TimeComponent
|
from survival.components.time_component import TimeComponent
|
||||||
from survival.components.vision_component import VisionComponent
|
|
||||||
from survival.generators.resource_type import ResourceType
|
|
||||||
from survival.settings import PLAYER_START_POSITION, STARTING_RESOURCES_AMOUNT
|
|
||||||
|
|
||||||
|
|
||||||
class PlayerGenerator:
|
class PlayerGenerator:
|
||||||
|
|
||||||
def create_player(self, world, game_map):
|
def create_player(self, world, game_map):
|
||||||
player = world.create_entity()
|
player = world.create_entity()
|
||||||
pos = PositionComponent([PLAYER_START_POSITION[0] * 32, PLAYER_START_POSITION[1] * 32],
|
pos = PositionComponent([0, 0], [0, 0])
|
||||||
PLAYER_START_POSITION)
|
|
||||||
world.add_component(player, pos)
|
world.add_component(player, pos)
|
||||||
world.add_component(player, MovementComponent())
|
world.add_component(player, MovementComponent())
|
||||||
world.add_component(player, InputComponent())
|
world.add_component(player, InputComponent())
|
||||||
world.add_component(player, OnCollisionComponent())
|
|
||||||
inv = InventoryComponent()
|
|
||||||
for resource in ResourceType:
|
|
||||||
inv.add_item(resource, STARTING_RESOURCES_AMOUNT)
|
|
||||||
world.add_component(player, ConsumptionComponent())
|
|
||||||
world.add_component(player, inv)
|
|
||||||
camera_target = CameraTargetComponent(pos)
|
camera_target = CameraTargetComponent(pos)
|
||||||
world.add_component(player, camera_target)
|
world.add_component(player, camera_target)
|
||||||
# world.add_component(player, AutomationComponent())
|
|
||||||
game_map.add_entity(player, pos)
|
game_map.add_entity(player, pos)
|
||||||
sprite = SpriteComponent('stevenson.png')
|
sprite = SpriteComponent('stevenson.png')
|
||||||
sprite.set_scale(1)
|
sprite.set_scale(1)
|
||||||
world.add_component(player, sprite)
|
world.add_component(player, sprite)
|
||||||
world.add_component(player, TimeComponent())
|
world.add_component(player, TimeComponent(0, 0, 0, 0))
|
||||||
world.add_component(player, VisionComponent())
|
|
||||||
world.add_component(player, LearningComponent())
|
|
||||||
|
|
||||||
return player
|
return player
|
||||||
|
@ -1,68 +1,31 @@
|
|||||||
import random
|
import random
|
||||||
|
|
||||||
from survival import GameMap
|
|
||||||
from survival.components.on_collision_component import OnCollisionComponent
|
|
||||||
from survival.components.inventory_component import InventoryComponent
|
|
||||||
from survival.components.learning_component import LearningComponent
|
|
||||||
from survival.components.position_component import PositionComponent
|
from survival.components.position_component import PositionComponent
|
||||||
from survival.components.resource_component import ResourceComponent
|
|
||||||
from survival.components.sprite_component import SpriteComponent
|
from survival.components.sprite_component import SpriteComponent
|
||||||
from survival.esper import World
|
from survival.settings import RESOURCES_AMOUNT
|
||||||
from survival.generators.resource_type import ResourceType
|
|
||||||
from survival.settings import RESOURCES_AMOUNT, PLAYER_START_POSITION
|
|
||||||
|
|
||||||
|
|
||||||
class ResourceGenerator:
|
class ResourceGenerator:
|
||||||
resources_amount = 0
|
|
||||||
|
|
||||||
def __init__(self, world, game_map):
|
def __init__(self, world, game_map):
|
||||||
self.world = world
|
self.world = world
|
||||||
self.map = game_map
|
self.map = game_map
|
||||||
|
|
||||||
def generate_resources(self, player: int):
|
def generate_resources(self):
|
||||||
ResourceGenerator.resources_amount = RESOURCES_AMOUNT
|
|
||||||
for x in range(RESOURCES_AMOUNT):
|
for x in range(RESOURCES_AMOUNT):
|
||||||
obj = self.world.create_entity()
|
obj = self.world.create_entity()
|
||||||
sprites = {
|
sprites = ['apple.png', 'water.png', 'wood.png']
|
||||||
ResourceType.FOOD: 'apple.png',
|
|
||||||
ResourceType.WATER: 'water.png',
|
|
||||||
ResourceType.WOOD: 'wood.png'
|
|
||||||
}
|
|
||||||
|
|
||||||
empty_grid_pos = self.get_empty_grid_position()
|
empty_grid_pos = self.get_empty_grid_position()
|
||||||
empty_pos = [empty_grid_pos[0] * 32, empty_grid_pos[1] * 32]
|
empty_pos = [empty_grid_pos[0] * 32, empty_grid_pos[1] * 32]
|
||||||
|
|
||||||
pos = PositionComponent(empty_pos, empty_grid_pos)
|
pos = PositionComponent(empty_pos, empty_grid_pos)
|
||||||
resource_type = random.choice(list(ResourceType))
|
sprite = SpriteComponent(random.choice(sprites))
|
||||||
sprite = SpriteComponent(sprites[resource_type])
|
|
||||||
col = OnCollisionComponent()
|
|
||||||
col.add_callback(self.remove_resource, world=self.world, game_map=self.map, resource_ent=obj, player=player)
|
|
||||||
self.world.add_component(obj, pos)
|
self.world.add_component(obj, pos)
|
||||||
self.world.add_component(obj, sprite)
|
self.world.add_component(obj, sprite)
|
||||||
self.world.add_component(obj, col)
|
|
||||||
self.world.add_component(obj, ResourceComponent(resource_type))
|
|
||||||
self.map.add_entity(obj, pos)
|
self.map.add_entity(obj, pos)
|
||||||
|
|
||||||
def get_empty_grid_position(self):
|
def get_empty_grid_position(self):
|
||||||
free_pos = [random.randrange(self.map.width), random.randrange(self.map.height)]
|
free_pos = [random.randrange(self.map.width), random.randrange(self.map.height)]
|
||||||
while self.map.is_colliding(free_pos) or (
|
while self.map.is_colliding(free_pos):
|
||||||
free_pos[0] == PLAYER_START_POSITION[0] and free_pos[1] == PLAYER_START_POSITION[1]):
|
|
||||||
free_pos = [random.randrange(self.map.width), random.randrange(self.map.height)]
|
free_pos = [random.randrange(self.map.width), random.randrange(self.map.height)]
|
||||||
return free_pos
|
return free_pos
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def remove_resource(world: World, game_map: GameMap, resource_ent: int, player: int):
|
|
||||||
pos = world.component_for_entity(resource_ent, PositionComponent)
|
|
||||||
resource = world.component_for_entity(resource_ent, ResourceComponent)
|
|
||||||
inventory = world.component_for_entity(player, InventoryComponent)
|
|
||||||
inventory.add_item(resource.resource_type, 1)
|
|
||||||
game_map.remove_entity(pos.grid_position)
|
|
||||||
world.delete_entity(resource_ent, immediate=True)
|
|
||||||
if world.has_component(player, LearningComponent):
|
|
||||||
learning = world.component_for_entity(player, LearningComponent)
|
|
||||||
learning.reward += 10
|
|
||||||
learning.score += 1
|
|
||||||
ResourceGenerator.resources_amount -= 1
|
|
||||||
if ResourceGenerator.resources_amount == 0:
|
|
||||||
learning.reward += 50
|
|
||||||
learning.done = True
|
|
||||||
|
|
||||||
|
@ -1,18 +0,0 @@
|
|||||||
from enum import Enum
|
|
||||||
|
|
||||||
|
|
||||||
class ResourceType(Enum):
|
|
||||||
FOOD = 1
|
|
||||||
WATER = 2
|
|
||||||
WOOD = 3
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def get_from_string(string):
|
|
||||||
if string == 'food':
|
|
||||||
return ResourceType.FOOD
|
|
||||||
elif string == 'water':
|
|
||||||
return ResourceType.WATER
|
|
||||||
elif string == 'wood':
|
|
||||||
return ResourceType.WOOD
|
|
||||||
else:
|
|
||||||
raise Exception("Unknown resource type")
|
|
@ -1,12 +1,9 @@
|
|||||||
import json
|
|
||||||
import random
|
import random
|
||||||
from pathlib import Path
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
from survival.game.biomes.biome_data import BiomeData
|
from survival.biomes.biome_data import BiomeData
|
||||||
from survival.game.biomes.biome_preset import BiomePreset
|
from survival.biomes.biome_preset import BiomePreset
|
||||||
from survival.game.biomes.noise import generate_noise
|
from survival.biomes.noise import generate_noise
|
||||||
from survival.game.tile import Tile
|
from survival.tile import Tile
|
||||||
|
|
||||||
|
|
||||||
class TileGenerator:
|
class TileGenerator:
|
||||||
@ -15,12 +12,8 @@ class TileGenerator:
|
|||||||
"Grass2": Tile(origin=(32, 0), cost=1),
|
"Grass2": Tile(origin=(32, 0), cost=1),
|
||||||
"Grass3": Tile(origin=(64, 0), cost=1),
|
"Grass3": Tile(origin=(64, 0), cost=1),
|
||||||
"Grass4": Tile(origin=(96, 0), cost=1),
|
"Grass4": Tile(origin=(96, 0), cost=1),
|
||||||
"Sand": Tile(origin=(64, 64), cost=20),
|
"Sand": Tile(origin=(64, 64), cost=4),
|
||||||
"Puddle": Tile(origin=(96, 64), cost=20),
|
"Puddle": Tile(origin=(96, 64), cost=5),
|
||||||
"DarkGrass": Tile(origin=(64, 96), cost=2),
|
|
||||||
"Water": Tile(origin=(96, 96), cost=3),
|
|
||||||
"Ice": Tile(origin=(0, 96), cost=2),
|
|
||||||
"Ice2": Tile(origin=(32, 96), cost=2),
|
|
||||||
}
|
}
|
||||||
|
|
||||||
TilesValues = list(Tiles.values())
|
TilesValues = list(Tiles.values())
|
||||||
@ -28,11 +21,11 @@ class TileGenerator:
|
|||||||
Biomes = [
|
Biomes = [
|
||||||
BiomePreset("Desert", min_height=0.2, min_moisture=0, min_heat=0.5, tiles=[Tiles["Grass1"], Tiles["Grass2"],
|
BiomePreset("Desert", min_height=0.2, min_moisture=0, min_heat=0.5, tiles=[Tiles["Grass1"], Tiles["Grass2"],
|
||||||
Tiles["Grass3"], Tiles["Grass4"]]),
|
Tiles["Grass3"], Tiles["Grass4"]]),
|
||||||
BiomePreset("Forest", min_height=0.2, min_moisture=0.4, min_heat=0.4, tiles=[Tiles["DarkGrass"]]),
|
BiomePreset("Forest", min_height=0.2, min_moisture=0.4, min_heat=0.4, tiles=[Tiles["Sand"]]),
|
||||||
BiomePreset("Grassland", min_height=0.2, min_moisture=0.5, min_heat=0.3, tiles=[Tiles["Sand"]]),
|
BiomePreset("Grassland", min_height=0.2, min_moisture=0.5, min_heat=0.3, tiles=[Tiles["Sand"]]),
|
||||||
BiomePreset("Marsh", min_height=0.3, min_moisture=0.5, min_heat=0.62, tiles=[Tiles["Puddle"]]),
|
BiomePreset("Marsh", min_height=0.3, min_moisture=0.5, min_heat=0.62, tiles=[Tiles["Puddle"]]),
|
||||||
BiomePreset("Ocean", min_height=0, min_moisture=0, min_heat=0, tiles=[Tiles["Water"]]),
|
BiomePreset("Ocean", min_height=0, min_moisture=0, min_heat=0, tiles=[Tiles["Sand"]]),
|
||||||
BiomePreset("Tundra", min_height=0.2, min_moisture=0, min_heat=0, tiles=[Tiles["Ice"], Tiles["Ice2"]])
|
BiomePreset("Tundra", min_height=0.2, min_moisture=0, min_heat=0, tiles=[Tiles["Puddle"]])
|
||||||
]
|
]
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@ -41,30 +34,16 @@ class TileGenerator:
|
|||||||
return Tile(origin=tile.origin, cost=tile.cost)
|
return Tile(origin=tile.origin, cost=tile.cost)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def generate_random_tiles(width: int, height: int) -> List[List[Tile]]:
|
def generate_random_tiles(width: int, height: int) -> list[list[Tile]]:
|
||||||
return [[TileGenerator.get_random_tile() for _ in range(width)] for _ in range(height)]
|
return [[TileGenerator.get_random_tile() for _ in range(width)] for _ in range(height)]
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def generate_biome_tiles(width: int, height: int):
|
def generate_biome_tiles(width: int, height: int):
|
||||||
# Use static seed to allow smooth learning of genetic algorithm
|
seed = random.randint(0, 9999999)
|
||||||
seed = 1
|
|
||||||
octaves = 10
|
octaves = 10
|
||||||
file_name = f'seeds/{seed}.bin'
|
height_map = generate_noise(width, height, octaves, seed)
|
||||||
biomes_file = Path(file_name)
|
moisture_map = generate_noise(width, height, octaves, seed)
|
||||||
if biomes_file.is_file():
|
heat_map = generate_noise(width, height, octaves, seed)
|
||||||
with open(file_name, 'r') as f:
|
|
||||||
data = json.load(f)
|
|
||||||
height_map = data[0]
|
|
||||||
moisture_map = data[1]
|
|
||||||
heat_map = data[2]
|
|
||||||
else:
|
|
||||||
height_map = generate_noise(width, height, octaves, seed)
|
|
||||||
moisture_map = generate_noise(width, height, octaves, seed)
|
|
||||||
heat_map = generate_noise(width, height, octaves, seed)
|
|
||||||
data = [height_map, moisture_map, heat_map]
|
|
||||||
Path('seeds').mkdir(exist_ok=True)
|
|
||||||
with open(file_name, 'w') as f:
|
|
||||||
json.dump(data, f)
|
|
||||||
|
|
||||||
return [[TileGenerator.get_biome(height_map[y][x], moisture_map[y][x], heat_map[y][x]).get_new_tile() for x in
|
return [[TileGenerator.get_biome(height_map[y][x], moisture_map[y][x], heat_map[y][x]).get_new_tile() for x in
|
||||||
range(width)] for y in range(height)]
|
range(width)] for y in range(height)]
|
||||||
|
@ -1,119 +1,25 @@
|
|||||||
from pathlib import Path
|
from survival import esper
|
||||||
|
|
||||||
from survival import esper, ResourceGenerator, PlayerGenerator
|
|
||||||
from survival.ai.model import LinearQNetwork
|
|
||||||
from survival.components.consumption_component import ConsumptionComponent
|
|
||||||
from survival.components.direction_component import DirectionChangeComponent
|
|
||||||
from survival.components.inventory_component import InventoryComponent
|
|
||||||
from survival.components.learning_component import LearningComponent
|
|
||||||
from survival.components.moving_component import MovingComponent
|
|
||||||
from survival.components.pathfinding_component import PathfindingComponent
|
|
||||||
from survival.components.position_component import PositionComponent
|
|
||||||
from survival.components.resource_component import ResourceComponent
|
|
||||||
from survival.components.time_component import TimeComponent
|
|
||||||
from survival.esper import World
|
|
||||||
from survival.game.camera import Camera
|
|
||||||
from survival.game.game_map import GameMap
|
|
||||||
from survival.generators.resource_type import ResourceType
|
|
||||||
from survival.settings import PLAYER_START_POSITION, STARTING_RESOURCES_AMOUNT, SCREEN_WIDTH, SCREEN_HEIGHT, \
|
|
||||||
MUTATE_NETWORKS, NETWORK_PARAMS, NEURAL_OUTPUT_SIZE, NEURAL_INPUT_SIZE
|
|
||||||
from survival.systems.automation_system import AutomationSystem
|
|
||||||
from survival.systems.camera_system import CameraSystem
|
from survival.systems.camera_system import CameraSystem
|
||||||
from survival.systems.collision_system import CollisionSystem
|
from survival.systems.collision_system import CollisionSystem
|
||||||
from survival.systems.consumption_system import ConsumptionSystem
|
|
||||||
from survival.systems.direction_system import DirectionSystem
|
from survival.systems.direction_system import DirectionSystem
|
||||||
from survival.systems.draw_system import DrawSystem
|
from survival.systems.draw_system import DrawSystem
|
||||||
from survival.systems.input_system import InputSystem
|
from survival.systems.input_system import InputSystem
|
||||||
from survival.systems.movement_system import MovementSystem
|
from survival.systems.movement_system import MovementSystem
|
||||||
from survival.systems.neural_system import NeuralSystem
|
from survival.systems.pathfinding_movement_system import PathfindingMovementSystem
|
||||||
from survival.systems.time_system import TimeSystem
|
from survival.systems.time_system import TimeSystem
|
||||||
from survival.systems.vision_system import VisionSystem
|
|
||||||
|
|
||||||
|
|
||||||
class WorldGenerator:
|
class WorldGenerator:
|
||||||
def __init__(self, win, callback):
|
|
||||||
self.win = win
|
|
||||||
self.callback = callback
|
|
||||||
self.world: World = esper.World(timed=True)
|
|
||||||
self.game_map: GameMap = GameMap(int(SCREEN_WIDTH / 32) * 2, 2 * int(SCREEN_HEIGHT / 32) + 1)
|
|
||||||
self.camera = Camera(self.game_map.width * 32, self.game_map.height * 32, self.win)
|
|
||||||
self.resource_generator: ResourceGenerator = ResourceGenerator(self.world, self.game_map)
|
|
||||||
self.player: int = -1
|
|
||||||
|
|
||||||
def create_world(self):
|
def create_world(self, camera, game_map):
|
||||||
self.world.add_processor(InputSystem(self.camera, self.game_map))
|
world = esper.World()
|
||||||
self.world.add_processor(CameraSystem(self.camera))
|
world.add_processor(InputSystem(camera))
|
||||||
self.world.add_processor(MovementSystem(self.game_map), priority=20)
|
world.add_processor(CameraSystem(camera))
|
||||||
self.world.add_processor(CollisionSystem(self.game_map), priority=30)
|
world.add_processor(MovementSystem(game_map), priority=1)
|
||||||
self.world.add_processor(NeuralSystem(self.game_map, self.callback), priority=50)
|
world.add_processor(CollisionSystem(game_map), priority=2)
|
||||||
if not MUTATE_NETWORKS:
|
world.add_processor(DrawSystem(camera))
|
||||||
model_path = Path("/model/model.pth")
|
world.add_processor(TimeSystem())
|
||||||
if model_path.is_file():
|
world.add_processor(PathfindingMovementSystem(game_map), priority=3)
|
||||||
self.world.get_processor(NeuralSystem).load_model(
|
world.add_processor(DirectionSystem())
|
||||||
LinearQNetwork.load(NETWORK_PARAMS, NEURAL_INPUT_SIZE, NEURAL_OUTPUT_SIZE))
|
|
||||||
else:
|
|
||||||
self.world.get_processor(NeuralSystem).load_model(
|
|
||||||
LinearQNetwork(NETWORK_PARAMS, NEURAL_INPUT_SIZE, NEURAL_OUTPUT_SIZE, False, NETWORK_PARAMS))
|
|
||||||
self.world.add_processor(DrawSystem(self.camera))
|
|
||||||
self.world.add_processor(TimeSystem())
|
|
||||||
self.world.add_processor(AutomationSystem(self.game_map))
|
|
||||||
# self.world.add_processor(PathfindingMovementSystem(self.game_map), priority=40)
|
|
||||||
self.world.add_processor(DirectionSystem())
|
|
||||||
self.world.add_processor(ConsumptionSystem(self.callback))
|
|
||||||
self.world.add_processor(VisionSystem(self.camera))
|
|
||||||
|
|
||||||
self.player = PlayerGenerator().create_player(self.world, self.game_map)
|
return world
|
||||||
self.world.get_processor(DrawSystem).initialize_interface(
|
|
||||||
self.world.component_for_entity(self.player, InventoryComponent))
|
|
||||||
|
|
||||||
# BuildingGenerator().create_home(self.world, self.game_map)
|
|
||||||
self.resource_generator.generate_resources(self.player)
|
|
||||||
return self.game_map, self.world, self.camera
|
|
||||||
|
|
||||||
def reset_world(self):
|
|
||||||
for processor in self.world.processors:
|
|
||||||
processor.reset()
|
|
||||||
|
|
||||||
self.reset_player()
|
|
||||||
self.reset_resources()
|
|
||||||
|
|
||||||
def reset_resources(self):
|
|
||||||
for entity in self.world.entities:
|
|
||||||
if self.world.has_component(entity, ResourceComponent):
|
|
||||||
self.game_map.remove_entity(self.world.component_for_entity(entity, PositionComponent).grid_position)
|
|
||||||
self.world.delete_entity(entity)
|
|
||||||
continue
|
|
||||||
self.resource_generator.generate_resources(self.player)
|
|
||||||
|
|
||||||
def reset_player(self):
|
|
||||||
self.world.remove_component(self.player, TimeComponent)
|
|
||||||
self.world.add_component(self.player, TimeComponent())
|
|
||||||
|
|
||||||
inv = self.world.component_for_entity(self.player, InventoryComponent)
|
|
||||||
inv.clear()
|
|
||||||
for resource in ResourceType:
|
|
||||||
inv.add_item(resource, STARTING_RESOURCES_AMOUNT)
|
|
||||||
|
|
||||||
if self.world.has_component(self.player, ConsumptionComponent):
|
|
||||||
self.world.remove_component(self.player, ConsumptionComponent)
|
|
||||||
self.world.add_component(self.player, ConsumptionComponent())
|
|
||||||
|
|
||||||
pos = self.world.component_for_entity(self.player, PositionComponent)
|
|
||||||
old_pos = pos.grid_position
|
|
||||||
|
|
||||||
self.world.remove_component(self.player, PositionComponent)
|
|
||||||
self.world.add_component(self.player,
|
|
||||||
PositionComponent([PLAYER_START_POSITION[0] * 32, PLAYER_START_POSITION[1] * 32],
|
|
||||||
PLAYER_START_POSITION))
|
|
||||||
|
|
||||||
self.game_map.move_entity(old_pos, pos.grid_position)
|
|
||||||
|
|
||||||
if self.world.has_component(self.player, MovingComponent):
|
|
||||||
self.world.remove_component(self.player, MovingComponent)
|
|
||||||
if self.world.has_component(self.player, DirectionChangeComponent):
|
|
||||||
self.world.remove_component(self.player, DirectionChangeComponent)
|
|
||||||
if self.world.has_component(self.player, PathfindingComponent):
|
|
||||||
self.world.remove_component(self.player, PathfindingComponent)
|
|
||||||
if self.world.has_component(self.player, LearningComponent):
|
|
||||||
learning = self.world.component_for_entity(self.player, LearningComponent)
|
|
||||||
learning.reset()
|
|
||||||
|
@ -1,14 +1,9 @@
|
|||||||
from enum import Enum
|
from enum import Enum
|
||||||
from queue import PriorityQueue
|
from queue import PriorityQueue
|
||||||
from typing import Tuple, List
|
|
||||||
|
|
||||||
from survival.components.direction_component import DirectionChangeComponent
|
from survival import GameMap
|
||||||
from survival.components.moving_component import MovingComponent
|
|
||||||
from survival.components.position_component import PositionComponent
|
from survival.components.position_component import PositionComponent
|
||||||
from survival.components.resource_component import ResourceComponent
|
from survival.enums import Direction
|
||||||
from survival.game.enums import Direction
|
|
||||||
from survival.esper import World
|
|
||||||
from survival.systems.consumption_system import ConsumeComponent
|
|
||||||
|
|
||||||
|
|
||||||
class Action(Enum):
|
class Action(Enum):
|
||||||
@ -16,38 +11,9 @@ class Action(Enum):
|
|||||||
ROTATE_RIGHT = 1
|
ROTATE_RIGHT = 1
|
||||||
MOVE = 2
|
MOVE = 2
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def from_array(action):
|
|
||||||
if action[0] == 1:
|
|
||||||
return Action.MOVE
|
|
||||||
if action[1] == 1:
|
|
||||||
return Action.ROTATE_LEFT
|
|
||||||
if action[2] == 1:
|
|
||||||
return Action.ROTATE_RIGHT
|
|
||||||
raise Exception("Unknown action.")
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def perform(world, entity, action):
|
|
||||||
if world.has_component(entity, MovingComponent):
|
|
||||||
raise Exception(f"Entity was already moving. Could not perform action: {action}")
|
|
||||||
if world.has_component(entity, DirectionChangeComponent):
|
|
||||||
raise Exception(f"Entity was already rotating. Could not perform action: {action}")
|
|
||||||
|
|
||||||
if action == Action.ROTATE_LEFT:
|
|
||||||
world.add_component(entity, DirectionChangeComponent(
|
|
||||||
Direction.rotate_left(world.component_for_entity(entity, PositionComponent).direction)))
|
|
||||||
world.add_component(entity, ConsumeComponent(0.2))
|
|
||||||
elif action == Action.ROTATE_RIGHT:
|
|
||||||
world.add_component(entity, DirectionChangeComponent(
|
|
||||||
Direction.rotate_right(world.component_for_entity(entity, PositionComponent).direction)))
|
|
||||||
world.add_component(entity, ConsumeComponent(0.2))
|
|
||||||
else:
|
|
||||||
world.add_component(entity, MovingComponent())
|
|
||||||
return action
|
|
||||||
|
|
||||||
|
|
||||||
class State:
|
class State:
|
||||||
def __init__(self, position: Tuple[int, int], direction: Direction):
|
def __init__(self, position: tuple[int, int], direction: Direction):
|
||||||
self.position = position
|
self.position = position
|
||||||
self.direction = direction
|
self.direction = direction
|
||||||
|
|
||||||
@ -66,12 +32,12 @@ class Node:
|
|||||||
return self.cost == other.cost
|
return self.cost == other.cost
|
||||||
|
|
||||||
|
|
||||||
def get_moved_position(position: Tuple[int, int], direction: Direction):
|
def get_moved_position(position: tuple[int, int], direction: Direction):
|
||||||
vector = Direction.get_vector(direction)
|
vector = Direction.get_vector(direction)
|
||||||
return position[0] + vector[0], position[1] + vector[1]
|
return position[0] + vector[0], position[1] + vector[1]
|
||||||
|
|
||||||
|
|
||||||
def get_states(state: State, game_map, world: World) -> List[Tuple[Action, State, int]]:
|
def get_states(state: State, game_map: GameMap) -> list[tuple[Action, State, int]]:
|
||||||
states = list()
|
states = list()
|
||||||
|
|
||||||
states.append((Action.ROTATE_LEFT, State(state.position, state.direction.rotate_left(state.direction)), 1))
|
states.append((Action.ROTATE_LEFT, State(state.position, state.direction.rotate_left(state.direction)), 1))
|
||||||
@ -80,34 +46,28 @@ def get_states(state: State, game_map, world: World) -> List[Tuple[Action, State
|
|||||||
target_position = get_moved_position(state.position, state.direction)
|
target_position = get_moved_position(state.position, state.direction)
|
||||||
if not game_map.is_colliding(target_position):
|
if not game_map.is_colliding(target_position):
|
||||||
states.append((Action.MOVE, State(target_position, state.direction), game_map.get_cost(target_position)))
|
states.append((Action.MOVE, State(target_position, state.direction), game_map.get_cost(target_position)))
|
||||||
elif game_map.get_entity(target_position) is not None:
|
|
||||||
ent = game_map.get_entity(target_position)
|
|
||||||
if world.has_component(ent, ResourceComponent):
|
|
||||||
states.append((Action.MOVE, State(target_position, state.direction), 3))
|
|
||||||
|
|
||||||
return states
|
return states
|
||||||
|
|
||||||
|
|
||||||
def build_path(node: Node):
|
def build_path(node: Node):
|
||||||
cost = 0
|
|
||||||
actions = [node.action]
|
actions = [node.action]
|
||||||
parent = node.parent
|
parent = node.parent
|
||||||
|
|
||||||
while parent is not None:
|
while parent is not None:
|
||||||
if parent.action is not None:
|
if parent.action is not None:
|
||||||
actions.append(parent.action)
|
actions.append(parent.action)
|
||||||
cost += parent.cost
|
|
||||||
parent = parent.parent
|
parent = parent.parent
|
||||||
|
|
||||||
actions.reverse()
|
actions.reverse()
|
||||||
return actions, cost
|
return actions
|
||||||
|
|
||||||
|
|
||||||
def heuristic(new_node: Node, goal: Tuple[int, int]):
|
def heuristic(new_node: Node, goal: tuple[int, int]):
|
||||||
return abs(new_node.state.position[0] - goal[0]) + abs(new_node.state.position[1] - goal[1])
|
return abs(new_node.state.position[0] - goal[0]) + abs(new_node.state.position[1] - goal[1])
|
||||||
|
|
||||||
|
|
||||||
def graph_search(game_map, start: PositionComponent, goal: tuple, world: World):
|
def graph_search(game_map: GameMap, start: PositionComponent, goal: tuple):
|
||||||
fringe = PriorityQueue()
|
fringe = PriorityQueue()
|
||||||
explored = list()
|
explored = list()
|
||||||
|
|
||||||
@ -121,7 +81,7 @@ def graph_search(game_map, start: PositionComponent, goal: tuple, world: World):
|
|||||||
while True:
|
while True:
|
||||||
# No solutions found
|
# No solutions found
|
||||||
if fringe.empty():
|
if fringe.empty():
|
||||||
return [], 0
|
return []
|
||||||
|
|
||||||
node = fringe.get()
|
node = fringe.get()
|
||||||
node_priority = node[0]
|
node_priority = node[0]
|
||||||
@ -136,13 +96,13 @@ def graph_search(game_map, start: PositionComponent, goal: tuple, world: World):
|
|||||||
explored_states.add((tuple(node.state.position), node.state.direction))
|
explored_states.add((tuple(node.state.position), node.state.direction))
|
||||||
|
|
||||||
# Get all possible states
|
# Get all possible states
|
||||||
for state in get_states(node.state, game_map, world):
|
for state in get_states(node.state, game_map):
|
||||||
sub_state = (tuple(state[1].position), state[1].direction)
|
sub_state = (tuple(state[1].position), state[1].direction)
|
||||||
new_node = Node(state=state[1],
|
new_node = Node(state=state[1],
|
||||||
parent=node,
|
parent=node,
|
||||||
action=state[0],
|
action=state[0],
|
||||||
cost=(state[2] + node.cost))
|
cost=(state[2] + node.cost))
|
||||||
|
|
||||||
priority = new_node.cost + heuristic(new_node, goal)
|
priority = new_node.cost + heuristic(new_node, goal)
|
||||||
if sub_state not in fringe_states and sub_state not in explored_states:
|
if sub_state not in fringe_states and sub_state not in explored_states:
|
||||||
fringe.put((priority, new_node))
|
fringe.put((priority, new_node))
|
@ -4,15 +4,12 @@ import pygame
|
|||||||
|
|
||||||
|
|
||||||
class Image:
|
class Image:
|
||||||
def __init__(self, filename='', pos=(0, 0), scale=1, surface=None):
|
def __init__(self, filename):
|
||||||
if surface is None:
|
self.texture = pygame.image.load(os.path.join('..', 'assets', filename)).convert_alpha()
|
||||||
self.texture = pygame.image.load(os.path.join('../', 'assets', filename)).convert_alpha()
|
|
||||||
else:
|
|
||||||
self.texture = surface
|
|
||||||
self.image = self.texture
|
self.image = self.texture
|
||||||
self.origin = (0, 0)
|
self.origin = (0, 0)
|
||||||
self.pos = pos
|
self.pos = (0, 0)
|
||||||
self.set_scale(scale)
|
self.scale = 1
|
||||||
|
|
||||||
def set_scale(self, scale):
|
def set_scale(self, scale):
|
||||||
self.image = pygame.transform.scale(self.texture,
|
self.image = pygame.transform.scale(self.texture,
|
||||||
@ -23,8 +20,3 @@ class Image:
|
|||||||
window.blit(self.image, camera.apply(self.pos),
|
window.blit(self.image, camera.apply(self.pos),
|
||||||
pygame.Rect(self.origin[0] * self.scale, self.origin[1] * self.scale, 32 * self.scale,
|
pygame.Rect(self.origin[0] * self.scale, self.origin[1] * self.scale, 32 * self.scale,
|
||||||
32 * self.scale))
|
32 * self.scale))
|
||||||
|
|
||||||
def draw_static(self, window):
|
|
||||||
window.blit(self.image, self.pos,
|
|
||||||
pygame.Rect(self.origin[0] * self.scale, self.origin[1] * self.scale, 32 * self.scale,
|
|
||||||
32 * self.scale))
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
78
survival/player.py
Normal file
78
survival/player.py
Normal file
@ -0,0 +1,78 @@
|
|||||||
|
from random import randint
|
||||||
|
|
||||||
|
import pygame
|
||||||
|
|
||||||
|
|
||||||
|
class Player:
|
||||||
|
def __init__(self):
|
||||||
|
# self.pos = [1024, 512]
|
||||||
|
# self.velocity = [0, 0]
|
||||||
|
# self.image = Image('stevenson.png')
|
||||||
|
# self.image.set_scale(2)
|
||||||
|
# self.speed = 30
|
||||||
|
# self.movement_target = [self.pos[0], self.pos[1]]
|
||||||
|
# self.timer = 0
|
||||||
|
pass
|
||||||
|
|
||||||
|
def draw(self, camera):
|
||||||
|
|
||||||
|
self.image.pos = self.pos
|
||||||
|
camera.draw(self.image)
|
||||||
|
|
||||||
|
def is_moving(self):
|
||||||
|
return self.pos != self.movement_target
|
||||||
|
|
||||||
|
def move_in_random_direction(self):
|
||||||
|
value = randint(0, 3)
|
||||||
|
random_movement = {
|
||||||
|
0: self.move_up,
|
||||||
|
1: self.move_down,
|
||||||
|
2: self.move_left,
|
||||||
|
3: self.move_right
|
||||||
|
}
|
||||||
|
random_movement[value]()
|
||||||
|
|
||||||
|
def update(self, delta, pressed_keys):
|
||||||
|
if self.is_moving():
|
||||||
|
if self.velocity[0] != 0:
|
||||||
|
self.pos[0] += self.velocity[0] * self.speed * delta / 100
|
||||||
|
if abs(self.movement_target[0] - self.pos[0]) < 0.1 * self.speed:
|
||||||
|
self.velocity = [0, 0]
|
||||||
|
self.pos = self.movement_target
|
||||||
|
else:
|
||||||
|
self.pos[1] += self.velocity[1] * self.speed * delta / 100
|
||||||
|
if abs(self.pos[1] - self.movement_target[1]) < 0.1 * self.speed:
|
||||||
|
self.velocity = [0, 0]
|
||||||
|
self.pos = self.movement_target
|
||||||
|
return
|
||||||
|
|
||||||
|
self.timer += delta
|
||||||
|
|
||||||
|
if self.timer > 1000:
|
||||||
|
self.move_in_random_direction()
|
||||||
|
self.timer = 0
|
||||||
|
|
||||||
|
if pressed_keys[pygame.K_LEFT]:
|
||||||
|
self.move_left()
|
||||||
|
elif pressed_keys[pygame.K_RIGHT]:
|
||||||
|
self.move_right()
|
||||||
|
elif pressed_keys[pygame.K_DOWN]:
|
||||||
|
self.move_down()
|
||||||
|
elif pressed_keys[pygame.K_UP]:
|
||||||
|
self.move_up()
|
||||||
|
|
||||||
|
def move_left(self):
|
||||||
|
self.velocity = [-1, 0]
|
||||||
|
self.movement_target = [self.pos[0] - 32, self.pos[1]]
|
||||||
|
|
||||||
|
def move_right(self):
|
||||||
|
self.velocity = [1, 0]
|
||||||
|
self.movement_target = [self.pos[0] + 32, self.pos[1]]
|
||||||
|
|
||||||
|
def move_up(self):
|
||||||
|
self.velocity = [0, -1]
|
||||||
|
self.movement_target = [self.pos[0], self.pos[1] - 32]
|
||||||
|
|
||||||
|
def move_down(self):
|
||||||
|
self.velocity = [0, 1]
|
||||||
|
self.movement_target = [self.pos[0], self.pos[1] + 32]
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -1,18 +1,4 @@
|
|||||||
SCREEN_WIDTH = 1000
|
SCREEN_WIDTH = 1000
|
||||||
SCREEN_HEIGHT = 600
|
SCREEN_HEIGHT = 600
|
||||||
RESOURCES_AMOUNT = 175
|
RESOURCES_AMOUNT = 300
|
||||||
DIRECTION_CHANGE_DELAY = 5
|
DIRECTION_CHANGE_DELAY = 200
|
||||||
PLAYER_START_POSITION = [20, 10]
|
|
||||||
STARTING_RESOURCES_AMOUNT = 5
|
|
||||||
AGENT_VISION_RANGE = 5
|
|
||||||
NEURAL_INPUT_SIZE = 11
|
|
||||||
NEURAL_OUTPUT_SIZE = 3
|
|
||||||
LEARN = True
|
|
||||||
MUTATE_NETWORKS = True
|
|
||||||
NETWORK_PARAMS = {
|
|
||||||
"neurons": 256,
|
|
||||||
"layers": 1,
|
|
||||||
"activation": 'relu',
|
|
||||||
"ratio": 0.001,
|
|
||||||
"optimizer": 'Adam'
|
|
||||||
}
|
|
||||||
|
@ -1,62 +0,0 @@
|
|||||||
from survival import esper, GameMap
|
|
||||||
from survival.components.moving_component import MovingComponent
|
|
||||||
from survival.components.pathfinding_component import PathfindingComponent
|
|
||||||
from survival.components.position_component import PositionComponent
|
|
||||||
from survival.components.resource_component import ResourceComponent
|
|
||||||
|
|
||||||
|
|
||||||
class AutomationComponent:
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
class AutomationSystem(esper.Processor):
|
|
||||||
def __init__(self, game_map: GameMap):
|
|
||||||
self.game_map = game_map
|
|
||||||
|
|
||||||
def process(self, dt):
|
|
||||||
for ent, (automation, pos) in self.world.get_components(AutomationComponent, PositionComponent):
|
|
||||||
if self.world.has_component(ent, PathfindingComponent):
|
|
||||||
continue
|
|
||||||
|
|
||||||
resource = self.detect_closest_resource(pos, ent)
|
|
||||||
if resource is None:
|
|
||||||
# TODO: Check if target position is not out of map bounds
|
|
||||||
self.world.add_component(ent, PathfindingComponent((pos.grid_position[0] * 32 + 64, pos.grid_position[1] * 32 + 64)))
|
|
||||||
# Move somewhere else
|
|
||||||
else:
|
|
||||||
target = self.world.component_for_entity(resource, PositionComponent).grid_position
|
|
||||||
self.world.add_component(ent, PathfindingComponent((target[0] * 32, target[1] * 32), True))
|
|
||||||
# Go collect target resource
|
|
||||||
|
|
||||||
def detect_closest_resource(self, position: PositionComponent, target_entity: int):
|
|
||||||
entity_position = position.grid_position
|
|
||||||
x_range = [entity_position[0] - 5, entity_position[0] + 5]
|
|
||||||
y_range = [entity_position[1] - 5, entity_position[1] + 5]
|
|
||||||
|
|
||||||
# Check if range is not out of map bounds
|
|
||||||
if x_range[0] < 0:
|
|
||||||
x_range[0] = 0
|
|
||||||
if x_range[1] >= self.game_map.width:
|
|
||||||
x_range[1] = self.game_map.width - 1
|
|
||||||
if y_range[0] < 0:
|
|
||||||
y_range[0] = 0
|
|
||||||
if y_range[1] >= self.game_map.height:
|
|
||||||
y_range[1] = self.game_map.height - 1
|
|
||||||
|
|
||||||
found_resource = [-1, 200000]
|
|
||||||
|
|
||||||
for y in range(y_range[0], y_range[1]):
|
|
||||||
for x in range(x_range[0], x_range[1]):
|
|
||||||
ent = self.game_map.get_entity([x, y])
|
|
||||||
if ent == target_entity:
|
|
||||||
continue
|
|
||||||
if ent is not None and self.world.has_component(ent, ResourceComponent):
|
|
||||||
res_position = self.world.component_for_entity(ent, PositionComponent).grid_position
|
|
||||||
distance = abs(entity_position[0] - res_position[0]) + abs(entity_position[1] - res_position[1])
|
|
||||||
if found_resource[1] > distance:
|
|
||||||
found_resource = [ent, distance]
|
|
||||||
|
|
||||||
if found_resource[0] == -1:
|
|
||||||
return None
|
|
||||||
else:
|
|
||||||
return found_resource[0]
|
|
@ -1,11 +1,9 @@
|
|||||||
import operator
|
import operator
|
||||||
|
|
||||||
from survival import esper
|
from survival import esper
|
||||||
from survival.components.on_collision_component import OnCollisionComponent
|
|
||||||
from survival.components.moving_component import MovingComponent
|
from survival.components.moving_component import MovingComponent
|
||||||
from survival.components.position_component import PositionComponent
|
from survival.components.position_component import PositionComponent
|
||||||
from survival.game.enums import Direction
|
from survival.enums import Direction
|
||||||
from survival.systems.consumption_system import ConsumeComponent
|
|
||||||
|
|
||||||
|
|
||||||
class CollisionSystem(esper.Processor):
|
class CollisionSystem(esper.Processor):
|
||||||
@ -13,30 +11,19 @@ class CollisionSystem(esper.Processor):
|
|||||||
self.map = game_map
|
self.map = game_map
|
||||||
|
|
||||||
def process(self, dt):
|
def process(self, dt):
|
||||||
for ent, (pos, moving, onCol) in self.world.get_components(PositionComponent, MovingComponent,
|
for ent, (pos, moving) in self.world.get_components(PositionComponent, MovingComponent):
|
||||||
OnCollisionComponent):
|
|
||||||
if moving.target is not None:
|
if moving.target is not None:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
moving.checked_collision = True
|
moving.checked_collision = True
|
||||||
|
|
||||||
vector = Direction.get_vector(pos.direction)
|
vector = Direction.get_vector(pos.direction)
|
||||||
moving.target = tuple(map(operator.add, vector, pos.grid_position))
|
moving.target = tuple(map(operator.add, vector, pos.grid_position))
|
||||||
moving.direction_vector = vector
|
moving.direction_vector = vector
|
||||||
if self.check_collision(moving.target):
|
if self.check_collision(moving.target):
|
||||||
self.world.add_component(ent, ConsumeComponent(0.05))
|
|
||||||
self.world.remove_component(ent, MovingComponent)
|
self.world.remove_component(ent, MovingComponent)
|
||||||
onCol.call_all()
|
|
||||||
colliding_object: int = self.map.get_entity(moving.target)
|
|
||||||
|
|
||||||
if colliding_object is None or not self.world.entity_exists(colliding_object):
|
|
||||||
continue
|
|
||||||
|
|
||||||
if self.world.has_component(colliding_object, OnCollisionComponent):
|
|
||||||
self.world.component_for_entity(colliding_object, OnCollisionComponent).call_all()
|
|
||||||
|
|
||||||
else:
|
else:
|
||||||
self.map.move_entity(pos.grid_position, moving.target)
|
self.map.move_entity(pos.grid_position, moving.target)
|
||||||
self.world.add_component(ent, ConsumeComponent(self.map.get_cost(moving.target)))
|
|
||||||
pos.grid_position = moving.target
|
pos.grid_position = moving.target
|
||||||
|
|
||||||
def check_collision(self, pos):
|
def check_collision(self, pos):
|
||||||
|
@ -1,64 +0,0 @@
|
|||||||
import random
|
|
||||||
|
|
||||||
from survival import esper
|
|
||||||
from survival.components.consumption_component import ConsumptionComponent
|
|
||||||
from survival.components.inventory_component import InventoryComponent
|
|
||||||
from survival.components.learning_component import LearningComponent
|
|
||||||
from survival.components.moving_component import MovingComponent
|
|
||||||
from survival.generators.resource_type import ResourceType
|
|
||||||
|
|
||||||
|
|
||||||
class ConsumeComponent:
|
|
||||||
def __init__(self, cost):
|
|
||||||
self.cost = cost
|
|
||||||
|
|
||||||
|
|
||||||
class ConsumptionSystem(esper.Processor):
|
|
||||||
CONSUMPTION_FACTOR = 0.05
|
|
||||||
CONSUMPTION_RANGE = 0.07
|
|
||||||
|
|
||||||
def __init__(self, callback):
|
|
||||||
self.callback = callback
|
|
||||||
|
|
||||||
def process(self, dt):
|
|
||||||
cons: ConsumptionComponent
|
|
||||||
inventory: InventoryComponent
|
|
||||||
c: ConsumeComponent
|
|
||||||
for ent, (cons, inventory, c) in self.world.get_components(ConsumptionComponent, InventoryComponent,
|
|
||||||
ConsumeComponent):
|
|
||||||
for resource in cons.status.keys():
|
|
||||||
cons.status[resource] -= c.cost * self.CONSUMPTION_FACTOR + random.uniform(-self.CONSUMPTION_RANGE,
|
|
||||||
self.CONSUMPTION_RANGE)
|
|
||||||
if cons.status[resource] < 0:
|
|
||||||
inventory.items[resource] -= 1
|
|
||||||
cons.status[resource] = 1
|
|
||||||
|
|
||||||
if self.world.has_component(ent, LearningComponent):
|
|
||||||
for resource in cons.status.keys():
|
|
||||||
if inventory.items[resource] <= 0 and self.world.has_component(ent, LearningComponent):
|
|
||||||
# If entity has run out of items
|
|
||||||
learning: LearningComponent = self.world.component_for_entity(ent, LearningComponent)
|
|
||||||
learning.reward -= 1
|
|
||||||
learning.done = True
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
self.callback(ent)
|
|
||||||
|
|
||||||
self.world.remove_component(ent, ConsumeComponent)
|
|
||||||
# cons.timer -= dt
|
|
||||||
# if cons.timer > 0:
|
|
||||||
# continue
|
|
||||||
# cons.timer = cons.timer_value
|
|
||||||
#
|
|
||||||
# if self.world.has_component(ent, LearningComponent):
|
|
||||||
# # If no item was picked up
|
|
||||||
# if cons.last_inventory_state == inventory.total_items_count():
|
|
||||||
# learning: LearningComponent = self.world.component_for_entity(ent, LearningComponent)
|
|
||||||
# learning.reward += -10
|
|
||||||
# learning.done = True
|
|
||||||
# cons.last_inventory_state = inventory.total_items_count()
|
|
||||||
# else:
|
|
||||||
# if inventory.has_item(ResourceType.FOOD):
|
|
||||||
# inventory.remove_item(ResourceType.FOOD, 1)
|
|
||||||
# else:
|
|
||||||
# self.callback()
|
|
@ -1,22 +1,14 @@
|
|||||||
from survival import esper
|
from survival import esper
|
||||||
from survival.components.position_component import PositionComponent
|
from survival.components.position_component import PositionComponent
|
||||||
from survival.components.sprite_component import SpriteComponent
|
from survival.components.sprite_component import SpriteComponent
|
||||||
from survival.game.user_interface import UserInterface
|
|
||||||
|
|
||||||
|
|
||||||
class DrawSystem(esper.Processor):
|
class DrawSystem(esper.Processor):
|
||||||
def __init__(self, camera):
|
def __init__(self, camera):
|
||||||
self.camera = camera
|
self.camera = camera
|
||||||
self.ui = UserInterface(self.camera.window)
|
|
||||||
|
|
||||||
def initialize_interface(self, inventory):
|
|
||||||
self.ui.load_inventory(inventory)
|
|
||||||
|
|
||||||
def process(self, dt):
|
def process(self, dt):
|
||||||
for ent, (sprite, pos) in self.world.get_components(SpriteComponent, PositionComponent):
|
for ent, (sprite, pos) in self.world.get_components(SpriteComponent, PositionComponent):
|
||||||
sprite.image.pos = pos.position
|
sprite.image.pos = pos.position
|
||||||
sprite.image.origin = (32 * pos.direction.value, 0)
|
sprite.image.origin = (32 * pos.direction.value, 0)
|
||||||
self.camera.draw(sprite.image)
|
self.camera.draw(sprite.image)
|
||||||
if self.ui.initialized:
|
|
||||||
self.ui.update()
|
|
||||||
self.ui.draw()
|
|
||||||
|
@ -1,18 +1,16 @@
|
|||||||
import pygame
|
import pygame
|
||||||
|
|
||||||
from survival import esper, GameMap
|
from survival import esper
|
||||||
from survival.components.direction_component import DirectionChangeComponent
|
from survival.components.direction_component import DirectionChangeComponent
|
||||||
from survival.components.input_component import InputComponent
|
from survival.components.input_component import InputComponent
|
||||||
from survival.components.moving_component import MovingComponent
|
from survival.components.moving_component import MovingComponent
|
||||||
from survival.components.pathfinding_component import PathfindingComponent
|
from survival.components.pathfinding_component import PathfindingComponent
|
||||||
from survival.components.position_component import PositionComponent
|
from survival.components.position_component import PositionComponent
|
||||||
from survival.components.resource_component import ResourceComponent
|
|
||||||
|
|
||||||
|
|
||||||
class InputSystem(esper.Processor):
|
class InputSystem(esper.Processor):
|
||||||
def __init__(self, camera, game_map: GameMap):
|
def __init__(self, camera):
|
||||||
self.camera = camera
|
self.camera = camera
|
||||||
self.game_map = game_map
|
|
||||||
|
|
||||||
def process(self, dt):
|
def process(self, dt):
|
||||||
for ent, (inp, pos) in self.world.get_components(InputComponent, PositionComponent):
|
for ent, (inp, pos) in self.world.get_components(InputComponent, PositionComponent):
|
||||||
@ -22,11 +20,7 @@ class InputSystem(esper.Processor):
|
|||||||
pos = pygame.mouse.get_pos()
|
pos = pygame.mouse.get_pos()
|
||||||
pos = (pos[0] - self.camera.camera.left, pos[1] - self.camera.camera.top)
|
pos = (pos[0] - self.camera.camera.left, pos[1] - self.camera.camera.top)
|
||||||
if not self.world.has_component(ent, PathfindingComponent):
|
if not self.world.has_component(ent, PathfindingComponent):
|
||||||
target_ent = self.game_map.get_entity([int(pos[0] / 32), int(pos[1]/ 32)])
|
self.world.add_component(ent, PathfindingComponent(pos))
|
||||||
if target_ent is not None and self.world.has_component(target_ent, ResourceComponent):
|
|
||||||
self.world.add_component(ent, PathfindingComponent(pos))
|
|
||||||
else:
|
|
||||||
self.world.add_component(ent, PathfindingComponent(pos))
|
|
||||||
|
|
||||||
if self.world.has_component(ent, MovingComponent):
|
if self.world.has_component(ent, MovingComponent):
|
||||||
continue
|
continue
|
||||||
|
@ -13,13 +13,11 @@ class MovementSystem(esper.Processor):
|
|||||||
for ent, (mov, pos, moving, sprite) in self.world.get_components(MovementComponent, PositionComponent,
|
for ent, (mov, pos, moving, sprite) in self.world.get_components(MovementComponent, PositionComponent,
|
||||||
MovingComponent,
|
MovingComponent,
|
||||||
SpriteComponent):
|
SpriteComponent):
|
||||||
# cost = self.map.get_cost(moving.target)
|
cost = self.map.get_cost(moving.target)
|
||||||
# pos.position[0] += moving.direction_vector[0] * mov.speed * dt / 100 / cost
|
pos.position[0] += moving.direction_vector[0] * mov.speed * dt / 100 / cost
|
||||||
# pos.position[1] += moving.direction_vector[1] * mov.speed * dt / 100 / cost
|
pos.position[1] += moving.direction_vector[1] * mov.speed * dt / 100 / cost
|
||||||
#
|
|
||||||
# if abs(moving.target[0] * 32 - pos.position[0]) < 1 * mov.speed and abs(
|
if abs(moving.target[0] * 32 - pos.position[0]) < 0.1 * mov.speed and abs(
|
||||||
# pos.position[1] - moving.target[1] * 32) < 1 * mov.speed:
|
pos.position[1] - moving.target[1] * 32) < 0.1 * mov.speed:
|
||||||
# pos.position = [moving.target[0] * 32, moving.target[1] * 32]
|
pos.position = [moving.target[0] * 32, moving.target[1] * 32]
|
||||||
# self.world.remove_component(ent, MovingComponent)
|
self.world.remove_component(ent, MovingComponent)
|
||||||
pos.position = [moving.target[0] * 32, moving.target[1] * 32]
|
|
||||||
self.world.remove_component(ent, MovingComponent)
|
|
||||||
|
@ -1,142 +0,0 @@
|
|||||||
import random
|
|
||||||
from collections import deque
|
|
||||||
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from survival import esper, GameMap
|
|
||||||
from survival.ai.genetic_algorithm import GeneticAlgorithm
|
|
||||||
from survival.components.direction_component import DirectionChangeComponent
|
|
||||||
from survival.components.inventory_component import InventoryComponent
|
|
||||||
from survival.components.moving_component import MovingComponent
|
|
||||||
from survival.components.position_component import PositionComponent
|
|
||||||
from survival.components.learning_component import LearningComponent
|
|
||||||
from survival.components.time_component import TimeComponent
|
|
||||||
from survival.ai.graph_search import Action
|
|
||||||
from survival.ai.learning_utils import get_state, LearningUtils
|
|
||||||
from survival.ai.model import LinearQNetwork, QTrainer
|
|
||||||
from survival.settings import LEARN, MUTATE_NETWORKS
|
|
||||||
|
|
||||||
MAX_MEMORY = 100_000
|
|
||||||
BATCH_SIZE = 1000
|
|
||||||
|
|
||||||
|
|
||||||
class NeuralSystem(esper.Processor):
|
|
||||||
def __init__(self, game_map: GameMap, callback):
|
|
||||||
self.game_map = game_map
|
|
||||||
self.reset_game = callback
|
|
||||||
self.n_games = 0 # number of games played
|
|
||||||
if MUTATE_NETWORKS:
|
|
||||||
self.starting_epsilon = GeneticAlgorithm.GAMES_PER_NETWORK / 2
|
|
||||||
else:
|
|
||||||
self.starting_epsilon = 100
|
|
||||||
self.epsilon = 0 # controlls the randomness
|
|
||||||
self.gamma = 0.9 # discount rate
|
|
||||||
self.memory = deque(maxlen=MAX_MEMORY) # exceeding memory removes the left elements to make more space
|
|
||||||
self.model = None # self.model = LinearQNetwork.load(11, 256, 3)
|
|
||||||
self.trainer = None # QTrainer(self.model, lr=LR, gamma=self.gamma)
|
|
||||||
self.utils = LearningUtils()
|
|
||||||
self.best_action = None
|
|
||||||
|
|
||||||
def load_model(self, model: LinearQNetwork):
|
|
||||||
self.model = model
|
|
||||||
self.trainer = QTrainer(self.model, self.model.network_params['ratio'], self.gamma,
|
|
||||||
self.model.network_params['optimizer'])
|
|
||||||
self.utils = LearningUtils()
|
|
||||||
self.memory = deque(maxlen=MAX_MEMORY)
|
|
||||||
self.starting_epsilon = GeneticAlgorithm.GAMES_PER_NETWORK / 2
|
|
||||||
self.n_games = 0
|
|
||||||
|
|
||||||
def remember(self, state, action, reward, next_state, done):
|
|
||||||
self.memory.append((state, action, reward, next_state, done))
|
|
||||||
|
|
||||||
def train_short_memory(self, state, action, reward, next_state, done):
|
|
||||||
self.trainer.train_step(state, action, reward, next_state, done)
|
|
||||||
|
|
||||||
def train_long_memory(self):
|
|
||||||
if len(self.memory) > BATCH_SIZE:
|
|
||||||
mini_sample = random.sample(self.memory, BATCH_SIZE)
|
|
||||||
else:
|
|
||||||
mini_sample = self.memory
|
|
||||||
states, actions, rewards, next_states, dones = zip(*mini_sample)
|
|
||||||
self.trainer.train_step(states, actions, rewards, next_states, dones)
|
|
||||||
|
|
||||||
def get_action(self, state):
|
|
||||||
self.epsilon = self.starting_epsilon - self.n_games
|
|
||||||
final_move = [0, 0, 0]
|
|
||||||
if random.randint(0, 200) < self.epsilon:
|
|
||||||
move = random.randint(0, 2)
|
|
||||||
final_move[move] = 1
|
|
||||||
else:
|
|
||||||
state_zero = torch.tensor(state, dtype=torch.float)
|
|
||||||
prediction = self.model(state_zero)
|
|
||||||
move = torch.argmax(prediction).item()
|
|
||||||
final_move[move] = 1
|
|
||||||
|
|
||||||
return final_move
|
|
||||||
|
|
||||||
def process(self, dt):
|
|
||||||
for ent, (pos, inventory, time, learning) in self.world.get_components(PositionComponent, InventoryComponent,
|
|
||||||
TimeComponent, LearningComponent):
|
|
||||||
if not learning.made_step:
|
|
||||||
learning.reset()
|
|
||||||
self.best_action = None
|
|
||||||
|
|
||||||
# Get the closest resource | [entity, path, cost]
|
|
||||||
resource: [int, list, int] = self.game_map.find_nearest_resource(self.world, ent, pos)
|
|
||||||
|
|
||||||
if resource is not None:
|
|
||||||
# If resource was found get the best move chosen by A*
|
|
||||||
self.best_action = resource[1][0]
|
|
||||||
|
|
||||||
# Get current entity state
|
|
||||||
old_state = get_state(self, ent, resource)
|
|
||||||
# Predict the action
|
|
||||||
action = self.get_action(old_state)
|
|
||||||
# Save the action
|
|
||||||
learning.load_step(old_state, action, resource)
|
|
||||||
# Perform the action
|
|
||||||
act = Action.perform(self.world, ent, Action.from_array(action))
|
|
||||||
self.utils.append_action(act, pos)
|
|
||||||
|
|
||||||
# Add reward if chosen action was the best action
|
|
||||||
if act == self.best_action:
|
|
||||||
learning.reward += 1
|
|
||||||
continue
|
|
||||||
|
|
||||||
# Wait for the action to complete
|
|
||||||
if self.world.has_component(ent, DirectionChangeComponent) or self.world.has_component(ent,
|
|
||||||
MovingComponent):
|
|
||||||
continue
|
|
||||||
|
|
||||||
self.utils.check_last_actions(learning)
|
|
||||||
|
|
||||||
resource = learning.resource
|
|
||||||
if resource is None or not self.world.entity_exists(resource[0]):
|
|
||||||
# Find a new resource if no resource was found or the last one was consumed
|
|
||||||
resource = self.game_map.find_nearest_resource(self.world, ent, pos)
|
|
||||||
|
|
||||||
# Get new state
|
|
||||||
new_state = get_state(self, ent, resource)
|
|
||||||
# Train agent's memory
|
|
||||||
self.train_short_memory(learning.old_state, learning.action, learning.reward, new_state, learning.done)
|
|
||||||
self.remember(learning.old_state, learning.action, learning.reward, new_state, learning.done)
|
|
||||||
|
|
||||||
learning.made_step = False
|
|
||||||
|
|
||||||
if learning.done:
|
|
||||||
self.n_games += 1
|
|
||||||
if LEARN:
|
|
||||||
self.train_long_memory()
|
|
||||||
if learning.score > learning.record:
|
|
||||||
learning.record = learning.score
|
|
||||||
if LEARN and not MUTATE_NETWORKS:
|
|
||||||
self.model.save()
|
|
||||||
|
|
||||||
# print('Game', self.n_games, 'Score', learning.score, 'Record', learning.record)
|
|
||||||
self.utils.add_scores(learning, self.n_games)
|
|
||||||
|
|
||||||
self.model.scores.append(learning.score)
|
|
||||||
learning.score = 0
|
|
||||||
self.utils.plot()
|
|
||||||
|
|
||||||
self.reset_game()
|
|
@ -3,20 +3,21 @@ from survival.components.direction_component import DirectionChangeComponent
|
|||||||
from survival.components.movement_component import MovementComponent
|
from survival.components.movement_component import MovementComponent
|
||||||
from survival.components.moving_component import MovingComponent
|
from survival.components.moving_component import MovingComponent
|
||||||
from survival.components.position_component import PositionComponent
|
from survival.components.position_component import PositionComponent
|
||||||
from survival.game.enums import Direction
|
from survival.enums import Direction
|
||||||
from survival.ai.graph_search import graph_search, Action
|
from survival.graph_search import graph_search, Action
|
||||||
from survival.systems.input_system import PathfindingComponent
|
from survival.systems.input_system import PathfindingComponent
|
||||||
|
|
||||||
|
|
||||||
class PathfindingMovementSystem(esper.Processor):
|
class PathfindingMovementSystem(esper.Processor):
|
||||||
def __init__(self, game_map):
|
def __init__(self, game_map):
|
||||||
self.game_map = game_map
|
self.game_map = game_map
|
||||||
|
pass
|
||||||
|
|
||||||
def process(self, dt):
|
def process(self, dt):
|
||||||
for ent, (pos, pathfinding, movement) in self.world.get_components(PositionComponent, PathfindingComponent,
|
for ent, (pos, pathfinding, movement) in self.world.get_components(PositionComponent, PathfindingComponent,
|
||||||
MovementComponent):
|
MovementComponent):
|
||||||
if pathfinding.path is None:
|
if pathfinding.path is None:
|
||||||
pathfinding.path, cost = graph_search(self.game_map, pos, pathfinding.target_grid_pos, self.world)
|
pathfinding.path = graph_search(self.game_map, pos, pathfinding.target_grid_pos)
|
||||||
|
|
||||||
if len(pathfinding.path) < 1:
|
if len(pathfinding.path) < 1:
|
||||||
self.world.remove_component(ent, PathfindingComponent)
|
self.world.remove_component(ent, PathfindingComponent)
|
||||||
|
@ -9,3 +9,4 @@ class TimeSystem(esper.Processor):
|
|||||||
if time.timer > 1000:
|
if time.timer > 1000:
|
||||||
time.add_time(1)
|
time.add_time(1)
|
||||||
time.timer = 0
|
time.timer = 0
|
||||||
|
print(time)
|
||||||
|
@ -1,18 +0,0 @@
|
|||||||
from survival import esper
|
|
||||||
from survival.components.position_component import PositionComponent
|
|
||||||
from survival.components.vision_component import VisionComponent
|
|
||||||
|
|
||||||
|
|
||||||
class VisionSystem(esper.Processor):
|
|
||||||
def __init__(self, camera):
|
|
||||||
self.camera = camera
|
|
||||||
|
|
||||||
def process(self, dt):
|
|
||||||
pos: PositionComponent
|
|
||||||
vision: VisionComponent
|
|
||||||
for ent, (pos, vision) in self.world.get_components(PositionComponent, VisionComponent):
|
|
||||||
vision.update_positions(pos.position)
|
|
||||||
self.camera.window.blit(vision.surface_l, self.camera.apply(vision.l_pos))
|
|
||||||
self.camera.window.blit(vision.surface_r, self.camera.apply(vision.r_pos))
|
|
||||||
self.camera.window.blit(vision.surface_t, self.camera.apply(vision.t_pos))
|
|
||||||
self.camera.window.blit(vision.surface_b, self.camera.apply(vision.b_pos))
|
|
@ -1,6 +1,6 @@
|
|||||||
from survival.generators.tile_generator import TileGenerator
|
from survival.generators.tile_generator import TileGenerator
|
||||||
from survival.game.image import Image
|
from survival.image import Image
|
||||||
from survival.game.tile import Tile
|
from survival.tile import Tile
|
||||||
|
|
||||||
|
|
||||||
class TileLayer:
|
class TileLayer:
|
||||||
@ -8,6 +8,7 @@ class TileLayer:
|
|||||||
self.width = width
|
self.width = width
|
||||||
self.height = height
|
self.height = height
|
||||||
self.tiles: list[list[Tile]] = TileGenerator.generate_biome_tiles(width, height)
|
self.tiles: list[list[Tile]] = TileGenerator.generate_biome_tiles(width, height)
|
||||||
|
# self.tiles: list[list[Tile]] = TileGenerator.generate_random_tiles(width, height)
|
||||||
self.image = Image('atlas.png')
|
self.image = Image('atlas.png')
|
||||||
|
|
||||||
def draw(self, camera, visible_area):
|
def draw(self, camera, visible_area):
|
Loading…
Reference in New Issue
Block a user