import os import random from disarming.parameters.hash_function import SeriesHash, SpecificityHash from objects.mine_models.mine import Mine from algorithms.learn.decision_tree.decision_tree import DecisionTree from algorithms.learn.neural_network.neural_network import NNType, NeuralNetwork SERIES_IMAGES_PATH = r"resources/data/neural_network/series/disarm" SPECIFICITY_IMAGES_PATH = r"resources/data/neural_network/specificity/disarm" class_to_series = \ {SeriesHash[name].value[2]: SeriesHash[name].value[1] for name, _ in SeriesHash.__members__.items()} class_to_specificity = \ {SpecificityHash[name].value[2]: SpecificityHash[name].value[1] for name, _ in SpecificityHash.__members__.items()} class DisarmingHandler: def __init__(self, mine: Mine): self.mine = mine self.mine_params = dict() self.series_img = None self.specificity_img = None self.recognized_series = None self.recognized_specificity = None self.correct_wire = None self.chosen_wire = None self._set_mine_params() self._set_correct_wire() def _set_mine_params(self): self.mine_params = self.mine.investigate() def _set_correct_wire(self): self.correct_wire = self.mine.wire def get_mine_params(self): return [self.mine_params["mine_type"], self.mine_params["weight"], self.mine_params["danger_cls"], self.mine_params["indicator"], self.mine_params["series"], self.mine_params["specificity"]] def pick_series_image(self): series_class = SeriesHash[self.mine_params["series"].upper().replace(" ", "_")].value[2] imgs_dir = os.path.join(SERIES_IMAGES_PATH, series_class) self.series_img = os.path.join( imgs_dir, random.choice([x for x in os.listdir(imgs_dir) if os.path.isfile(os.path.join(imgs_dir, x))])) return self.series_img def pick_specificity_image(self): specificity_class = SpecificityHash[self.mine_params["specificity"].upper().replace(" ", "_")].value[2] imgs_dir = os.path.join(SPECIFICITY_IMAGES_PATH, specificity_class) self.specificity_img = os.path.join( imgs_dir, random.choice([x for x in os.listdir(imgs_dir) if os.path.isfile(os.path.join(imgs_dir, x))])) return self.specificity_img def recognize_series(self): nn = NeuralNetwork(NNType.SERIES, load_from_file=True) answer, confidence = nn.get_answer(self.series_img) self.recognized_series = class_to_series[answer] return self.recognized_series, self.mine_params["series"] == self.recognized_series def recognize_specificity(self): nn = NeuralNetwork(NNType.SPECIFICITY, load_from_file=True) answer, confidence = nn.get_answer(self.specificity_img) self.recognized_specificity = class_to_specificity[answer] return self.recognized_specificity, self.mine_params["specificity"] == self.recognized_specificity def choose_wire(self): dt = DecisionTree(load_from_file=True) self.chosen_wire = dt.get_answer(self.mine_params)[0] return self.chosen_wire def defuse(self): return self.mine.disarm(self.chosen_wire)