Projekt_Sztuczna_Inteligencja/algorithms/learning_algorithms/decision_tree.py

23 lines
676 B
Python

from joblib import dump, load
from sklearn import tree
from sklearn.feature_extraction import DictVectorizer
# X is a list of dictionaries with samples, Y is a list of samples' results
X = list()
Y = list()
# TODO: load training data
# vec transforms X (a list of dictionaries of string-string pairs) to binary arrays for tree to work on
vec = DictVectorizer()
# create and run Tree Clasifier upon provided data
clf = tree.DecisionTreeClassifier(max_depth=3)
clf = clf.fit(vec.fit_transform(X).toarray(), Y)
# save decision tree to file
dump(clf, 'decision_tree.joblib')
# print a tree (not necessary)
print(tree.export_text(clf, feature_names=vec.get_feature_names()))