Compare commits
No commits in common. "master" and "master" have entirely different histories.
@ -1,15 +1,8 @@
|
||||
from resources.Globals import *
|
||||
|
||||
images_coord_list = []
|
||||
cell_expense_list = []
|
||||
|
||||
|
||||
class Node:
|
||||
def __init__(self):
|
||||
self.state = State()
|
||||
self.parent = []
|
||||
self.parent = None
|
||||
self.action = ""
|
||||
self.priority = 0
|
||||
|
||||
|
||||
class State:
|
||||
@ -18,14 +11,6 @@ class State:
|
||||
self.direction = ""
|
||||
|
||||
|
||||
def init_data(coord_list, expense_list):
|
||||
global images_coord_list
|
||||
global cell_expense_list
|
||||
|
||||
images_coord_list = coord_list
|
||||
cell_expense_list = expense_list
|
||||
|
||||
|
||||
def successor(state):
|
||||
|
||||
node_state_left = Node()
|
||||
@ -37,249 +22,153 @@ def successor(state):
|
||||
node_state_left.state = State()
|
||||
node_state_left.state.coord = state.coord
|
||||
node_state_left.state.direction = "north"
|
||||
#node_state_left.parent = state
|
||||
node_state_left.action = "Left"
|
||||
|
||||
node_state_right.state = State()
|
||||
node_state_right.state.coord = state.coord
|
||||
node_state_right.state.direction = "south"
|
||||
#node_state_right.parent = state
|
||||
node_state_right.action = "Right"
|
||||
|
||||
if state.coord[0] + STEP < FRAME_WIDTH:
|
||||
node_state_forward.state = State()
|
||||
node_state_forward.state.coord = [state.coord[0] + STEP, state.coord[1]]
|
||||
node_state_forward.state.direction = state.direction
|
||||
node_state_forward.action = "Up"
|
||||
node_state_forward.state = State()
|
||||
node_state_forward.state.coord = [state.coord[0] + 53, state.coord[1]]
|
||||
node_state_forward.state.direction = state.direction
|
||||
#node_state_forward.parent = state
|
||||
node_state_forward.action = "Up"
|
||||
|
||||
#return [node_state_left, node_state_right, node_state_forward]
|
||||
|
||||
elif state.direction == "west":
|
||||
|
||||
node_state_left.state = State()
|
||||
node_state_left.state.coord = state.coord
|
||||
node_state_left.state.direction = "south"
|
||||
#node_state_left.parent = state
|
||||
node_state_left.action = "Left"
|
||||
|
||||
node_state_right.state = State()
|
||||
node_state_right.state.coord = state.coord
|
||||
node_state_right.state.direction = "north"
|
||||
#node_state_right.parent = state
|
||||
node_state_right.action = "Right"
|
||||
|
||||
if state.coord[0] > x_start:
|
||||
node_state_forward.state = State()
|
||||
node_state_forward.state.coord = [state.coord[0] - STEP, state.coord[1]]
|
||||
node_state_forward.state.direction = state.direction
|
||||
node_state_forward.action = "Up"
|
||||
node_state_forward.state = State()
|
||||
node_state_forward.state.coord = [state.coord[0] - 53, state.coord[1]]
|
||||
node_state_forward.state.direction = state.direction
|
||||
#node_state_forward.parent = state
|
||||
node_state_forward.action = "Up"
|
||||
|
||||
#return [node_state_left, node_state_right, node_state_forward]
|
||||
|
||||
elif state.direction == "north":
|
||||
|
||||
node_state_left.state = State()
|
||||
node_state_left.state.coord = state.coord
|
||||
node_state_left.state.direction = "west"
|
||||
#node_state_left.parent = state
|
||||
node_state_left.action = "Left"
|
||||
|
||||
node_state_right.state = State()
|
||||
node_state_right.state.coord = state.coord
|
||||
node_state_right.state.direction = "east"
|
||||
#node_state_right.parent = state
|
||||
node_state_right.action = "Right"
|
||||
|
||||
if state.coord[1] > x_start:
|
||||
node_state_forward.state = State()
|
||||
node_state_forward.state.coord = [state.coord[0], state.coord[1] - STEP]
|
||||
node_state_forward.state.direction = state.direction
|
||||
node_state_forward.action = "Up"
|
||||
node_state_forward.state = State()
|
||||
node_state_forward.state.coord = [state.coord[0], state.coord[1] - 53]
|
||||
node_state_forward.state.direction = state.direction
|
||||
#node_state_forward.parent = state
|
||||
node_state_forward.action = "Up"
|
||||
|
||||
#return [node_state_left, node_state_right, node_state_forward]
|
||||
|
||||
elif state.direction == "south":
|
||||
|
||||
node_state_left.state = State()
|
||||
node_state_left.state.coord = state.coord
|
||||
node_state_left.state.direction = "east"
|
||||
#node_state_left.parent = state
|
||||
node_state_left.action = "Left"
|
||||
|
||||
node_state_right.state = State()
|
||||
node_state_right.state.coord = state.coord
|
||||
node_state_right.state.direction = "west"
|
||||
#node_state_right.parent = state
|
||||
node_state_right.action = "Right"
|
||||
|
||||
if state.coord[1] + STEP < FRAME_HEIGHT:
|
||||
node_state_forward.state = State()
|
||||
node_state_forward.state.coord = [state.coord[0], state.coord[1] + STEP]
|
||||
node_state_forward.state.direction = state.direction
|
||||
node_state_forward.action = "Up"
|
||||
node_state_forward.state = State()
|
||||
node_state_forward.state.coord = [state.coord[0], state.coord[1] + 53]
|
||||
node_state_forward.state.direction = state.direction
|
||||
#node_state_forward.parent = state
|
||||
node_state_forward.action = "Up"
|
||||
|
||||
if len(node_state_forward.state.coord) != 0:
|
||||
return [node_state_left, node_state_right, node_state_forward]
|
||||
else:
|
||||
return [node_state_left, node_state_right]
|
||||
#return [node_state_left, node_state_right, node_state_forward]
|
||||
|
||||
return [node_state_left, node_state_right, node_state_forward]
|
||||
|
||||
|
||||
def get_cell_expense(node):
|
||||
global images_coord_list
|
||||
global cell_expense_list
|
||||
def graphsearch(fringe, explored, start_state, end_state_coord):
|
||||
|
||||
for i in range(0, len(images_coord_list)):
|
||||
if (images_coord_list[i][0] <= node.state.coord[0] and node.state.coord[0] <= images_coord_list[i][0] + IMAGE_SIZE) and (images_coord_list[i][1] <= node.state.coord[1] and node.state.coord[1] <= images_coord_list[i][1] + IMAGE_SIZE):
|
||||
return cell_expense_list[i]
|
||||
|
||||
|
||||
def heurystyka(node_now):
|
||||
|
||||
if node_now.action == "Left" or node_now.action == "Right":
|
||||
return node_now.parent[2] + (get_cell_expense(node_now) / 2)
|
||||
elif node_now.action == "Up":
|
||||
return node_now.parent[2] + (get_cell_expense(node_now) * 2)
|
||||
elif node_now.action == "":
|
||||
return get_cell_expense(node_now)
|
||||
|
||||
|
||||
# def graph_search(fringe, explored, start_state, end_state_coord):
|
||||
#
|
||||
# node = Node()
|
||||
# node.state = start_state
|
||||
# node.parent = node.state
|
||||
# fringe.append(node)
|
||||
# iterator = 0
|
||||
#
|
||||
# end_loop = True
|
||||
# while end_loop:
|
||||
# if len(fringe) == 0:
|
||||
# end_loop = False
|
||||
# #return False
|
||||
#
|
||||
# elem = fringe[iterator]
|
||||
#
|
||||
# if elem.state.coord == end_state_coord:
|
||||
# return fringe
|
||||
#
|
||||
# explored.append(elem)
|
||||
#
|
||||
# another_states = successor(elem.state)
|
||||
# for i in range(0, len(another_states)):
|
||||
# n = len(fringe)
|
||||
# for j in range(0, n):
|
||||
# if another_states[i].state.coord[0] == fringe[j].state.coord[0] and another_states[i].state.coord[1] == fringe[j].state.coord[1]:
|
||||
# if another_states[i].state.direction == fringe[j].state.direction:
|
||||
# break
|
||||
# else:
|
||||
# states = []
|
||||
# for k in range(0, len(fringe)):
|
||||
# new_state = [fringe[k].state.coord, fringe[k].state.direction]
|
||||
# states.append(new_state)
|
||||
# now_state = [another_states[i].state.coord, another_states[i].state.direction]
|
||||
# if now_state in states:
|
||||
# break
|
||||
#
|
||||
# another_states[i].parent = elem.state
|
||||
# fringe.append(another_states[i])
|
||||
# else:
|
||||
# states = []
|
||||
# for k in range(0, len(fringe)):
|
||||
# new_state = [fringe[k].state.coord, fringe[k].state.direction]
|
||||
# states.append(new_state)
|
||||
# now_state = [another_states[i].state.coord, another_states[i].state.direction]
|
||||
#
|
||||
# if now_state in states:
|
||||
# break
|
||||
#
|
||||
# if another_states[i].state.direction == fringe[j].state.direction:
|
||||
# another_states[i].parent = elem.state
|
||||
# fringe.append(another_states[i])
|
||||
# iterator += 1
|
||||
|
||||
|
||||
def graph_search_A(fringe, explored, start_state, end_state_coord):
|
||||
node = Node()
|
||||
node.state = start_state
|
||||
node.priority = heurystyka(node)
|
||||
node.parent = [node.state.coord, node.state.direction, node.priority]
|
||||
|
||||
node.parent = node.state
|
||||
#node.action = "Right"
|
||||
fringe.append(node)
|
||||
iterator = 0
|
||||
iter = 0
|
||||
|
||||
end_loop = True
|
||||
while end_loop:
|
||||
bool = True
|
||||
while bool:
|
||||
if len(fringe) == 0:
|
||||
end_loop = False
|
||||
# return False
|
||||
bool = False
|
||||
#return False
|
||||
|
||||
elem = fringe[iterator]
|
||||
elem = fringe[iter]
|
||||
|
||||
if elem.state.coord == end_state_coord:
|
||||
print("Gotowe!")
|
||||
bool = False
|
||||
return fringe
|
||||
|
||||
explored.append(elem)
|
||||
|
||||
another_states = successor(elem.state)
|
||||
for i in range(0, len(another_states)):
|
||||
another_states[i].parent = [elem.state.coord, elem.state.direction, elem.priority]
|
||||
p = heurystyka(another_states[i])
|
||||
|
||||
n = len(fringe)
|
||||
for j in range(0, n):
|
||||
if another_states[i].state.coord[0] == fringe[j].state.coord[0] and another_states[i].state.coord[1] == fringe[j].state.coord[1]:
|
||||
if another_states[i].state.direction == fringe[j].state.direction and p < fringe[j].priority:
|
||||
another_states[i].priority = p
|
||||
fringe[j] = another_states[i]
|
||||
if another_states[i].state.direction == fringe[j].state.direction:
|
||||
break
|
||||
else:
|
||||
# states = []
|
||||
# for k in range(0, len(fringe)):
|
||||
# new_state = fringe[k].state
|
||||
# states.append(new_state)
|
||||
# now_state = another_states[i].state
|
||||
# if now_state in states:
|
||||
# break
|
||||
|
||||
states = []
|
||||
for k in range(0, len(fringe)):
|
||||
new_state = [fringe[k].state.coord, fringe[k].state.direction]
|
||||
states.append(new_state)
|
||||
now_state = [another_states[i].state.coord, another_states[i].state.direction]
|
||||
if now_state in states:
|
||||
index = states.index(now_state)
|
||||
if p < fringe[index].priority:
|
||||
another_states[i].priority = p
|
||||
fringe[index] = another_states[i]
|
||||
break
|
||||
else:
|
||||
break
|
||||
break
|
||||
|
||||
another_states[i].priority = p
|
||||
# bool_break = False
|
||||
# for k in range(0, n):
|
||||
# if another_states[i].state.coord[0] == fringe[k].state.coord[0] and another_states[i].state.coord[1] == fringe[k].state.coord[1]:
|
||||
# if another_states[i].state.direction == fringe[k].state.direction:
|
||||
# bool_break = True
|
||||
# if bool_break:
|
||||
# break
|
||||
another_states[i].parent = elem.state
|
||||
fringe.append(another_states[i])
|
||||
|
||||
n1 = len(fringe)
|
||||
|
||||
while n1 > 1:
|
||||
change = False
|
||||
for l in range(0, n1 - 1):
|
||||
if fringe[l].priority > fringe[l + 1].priority:
|
||||
fringe[l], fringe[l + 1] = fringe[l + 1], fringe[l]
|
||||
change = True
|
||||
|
||||
n1 -= 1
|
||||
|
||||
if not change:
|
||||
break
|
||||
else:
|
||||
states = []
|
||||
for k in range(0, len(fringe)):
|
||||
new_state = [fringe[k].state.coord, fringe[k].state.direction]
|
||||
states.append(new_state)
|
||||
now_state = [another_states[i].state.coord, another_states[i].state.direction]
|
||||
|
||||
if now_state in states:
|
||||
index = states.index(now_state)
|
||||
if p < fringe[index].priority:
|
||||
another_states[i].priority = p
|
||||
fringe[index] = another_states[i]
|
||||
break
|
||||
else:
|
||||
break
|
||||
|
||||
if another_states[i] in fringe:
|
||||
break
|
||||
if another_states[i].state.direction == fringe[j].state.direction:
|
||||
another_states[i].priority = p
|
||||
another_states[i].parent = elem.state
|
||||
fringe.append(another_states[i])
|
||||
|
||||
n2 = len(fringe)
|
||||
|
||||
while n2 > 1:
|
||||
change = False
|
||||
for h in range(0, n2 - 1):
|
||||
if fringe[h].priority > fringe[h + 1].priority:
|
||||
fringe[h], fringe[h + 1] = fringe[h + 1], fringe[h]
|
||||
change = True
|
||||
|
||||
n2 -= 1
|
||||
|
||||
if not change:
|
||||
break
|
||||
iterator += 1
|
||||
iter += 1
|
||||
|
@ -1,17 +0,0 @@
|
||||
class Track:
|
||||
def __init__(self, priority, road):
|
||||
self.priority = priority
|
||||
self.road = road
|
||||
|
||||
def __eq__(self, other):
|
||||
try:
|
||||
return self.priority == other.priority
|
||||
except AttributeError:
|
||||
return NotImplemented
|
||||
|
||||
def __lt__(self, other):
|
||||
try:
|
||||
return self.priority < other.priority
|
||||
except AttributeError:
|
||||
return NotImplemented
|
||||
|
@ -1,203 +0,0 @@
|
||||
import queue
|
||||
from itertools import permutations, islice
|
||||
from math import sqrt
|
||||
import random
|
||||
|
||||
from resources.Globals import NUMBER_OF_INDIVIDUALS_FOR_DUEL, NUMBER_OF_POINTS_PERMUTATION, PERCENT_OF_MUTATION, \
|
||||
PERCENT_OF_OUTGOING_INDIVIDUALS
|
||||
|
||||
|
||||
class Travel:
|
||||
def __init__(self):
|
||||
self.points_coord = []
|
||||
self.points_map = {}
|
||||
|
||||
|
||||
def genetic_algorithm(travel_map):
|
||||
population = []
|
||||
road_map = list(travel_map.keys())
|
||||
points_permutation = list(map(list, islice(permutations(road_map), NUMBER_OF_POINTS_PERMUTATION)))
|
||||
# Generate the first population
|
||||
for i in range(0, len(points_permutation)):
|
||||
road = points_permutation[i]
|
||||
priority = adaptation_function(points_permutation[i], travel_map)
|
||||
|
||||
population.append((priority, road))
|
||||
|
||||
while len(population) < 10000:
|
||||
parent1, parent2 = tournament_selection(population)
|
||||
|
||||
child = edge_recombination_crossover(parent1[1], parent2[1])
|
||||
child_priority = adaptation_function(child, travel_map)
|
||||
|
||||
population.append((child_priority, child))
|
||||
|
||||
mutation_function(population, travel_map)
|
||||
population.sort(key=lambda x: x[0], reverse=True)
|
||||
|
||||
return population[0]
|
||||
|
||||
|
||||
def adaptation_function(list_points, travel_map):
|
||||
index_of_point = 0
|
||||
distance = 0
|
||||
while True:
|
||||
|
||||
if index_of_point < (-len(list_points)):
|
||||
return round((1 / distance) * 1000000)
|
||||
|
||||
if index_of_point == (len(list_points) - 1):
|
||||
x1 = travel_map.get(list_points[index_of_point])[0]
|
||||
y1 = travel_map.get(list_points[index_of_point])[1]
|
||||
|
||||
x2 = travel_map.get(list_points[-len(list_points)])[0]
|
||||
y2 = travel_map.get(list_points[-len(list_points)])[1]
|
||||
|
||||
index_of_point = -len(list_points) - 1
|
||||
else:
|
||||
x1 = travel_map.get(list_points[index_of_point])[0]
|
||||
y1 = travel_map.get(list_points[index_of_point])[1]
|
||||
|
||||
x2 = travel_map.get(list_points[index_of_point + 1])[0]
|
||||
y2 = travel_map.get(list_points[index_of_point + 1])[1]
|
||||
|
||||
index_of_point += 1
|
||||
|
||||
distance += sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
|
||||
|
||||
|
||||
def tournament_selection(population):
|
||||
individuals_for_duel1 = []
|
||||
individuals_for_duel2 = []
|
||||
population_length = len(population)
|
||||
|
||||
while True:
|
||||
|
||||
if len(individuals_for_duel1) == NUMBER_OF_INDIVIDUALS_FOR_DUEL and len(individuals_for_duel2) == NUMBER_OF_INDIVIDUALS_FOR_DUEL:
|
||||
break
|
||||
|
||||
if len(individuals_for_duel1) != NUMBER_OF_INDIVIDUALS_FOR_DUEL:
|
||||
index1 = random.randint(0, population_length - 1)
|
||||
candidate_for_duel1 = population[index1]
|
||||
if candidate_for_duel1 not in individuals_for_duel1:
|
||||
individuals_for_duel1.append(candidate_for_duel1)
|
||||
|
||||
if len(individuals_for_duel2) != NUMBER_OF_INDIVIDUALS_FOR_DUEL:
|
||||
index2 = random.randint(0, population_length - 1)
|
||||
candidate_for_duel2 = population[index2]
|
||||
if candidate_for_duel2 not in individuals_for_duel1 and candidate_for_duel2 not in individuals_for_duel2:
|
||||
individuals_for_duel2.append(candidate_for_duel2)
|
||||
|
||||
winner_of_duel1 = max(individuals_for_duel1, key=lambda x: x[0])
|
||||
winner_of_duel2 = max(individuals_for_duel2, key=lambda x: x[0])
|
||||
|
||||
return winner_of_duel1, winner_of_duel2
|
||||
|
||||
def edge_recombination_crossover(parent1, parent2):
|
||||
dict_of_neighbors = generate_dict_of_neighbors(parent1, parent2)
|
||||
|
||||
gen_index = random.randint(0, len(parent1) - 1)
|
||||
gen = parent1[gen_index]
|
||||
child = []
|
||||
while True:
|
||||
|
||||
child.append(gen)
|
||||
|
||||
if len(child) == len(parent1):
|
||||
return child
|
||||
|
||||
for key in dict_of_neighbors.keys():
|
||||
if gen in dict_of_neighbors[key]:
|
||||
dict_of_neighbors[key].remove(gen)
|
||||
|
||||
if not dict_of_neighbors[gen]:
|
||||
while True:
|
||||
# new_gen = random.randint(parent1[0], parent1[-1])
|
||||
new_gen_index = random.randint(0, len(parent1) - 1)
|
||||
new_gen = parent1[new_gen_index]
|
||||
if new_gen not in child:
|
||||
break
|
||||
else:
|
||||
new_gen = dict_of_neighbors[gen][0]
|
||||
best_neighbor = len(dict_of_neighbors[new_gen])
|
||||
for neighbor in dict_of_neighbors[gen][1:]:
|
||||
possible_best_neighbor = len(dict_of_neighbors[neighbor])
|
||||
if possible_best_neighbor <= best_neighbor:
|
||||
best_neighbor = possible_best_neighbor
|
||||
new_gen = neighbor
|
||||
gen = new_gen
|
||||
|
||||
|
||||
def generate_dict_of_neighbors(parent1, parent2):
|
||||
dict_of_neighbors = {}
|
||||
for i in range(0, len(parent1)):
|
||||
list_of_neighbors = []
|
||||
element = parent1[i]
|
||||
if i == 0:
|
||||
left_neighbor1 = parent1[-1]
|
||||
right_neighbor1 = parent1[i + 1]
|
||||
elif i == (len(parent1) - 1):
|
||||
left_neighbor1 = parent1[i - 1]
|
||||
right_neighbor1 = parent1[0]
|
||||
else:
|
||||
left_neighbor1 = parent1[i - 1]
|
||||
right_neighbor1 = parent1[i + 1]
|
||||
|
||||
list_of_neighbors.extend([left_neighbor1, right_neighbor1])
|
||||
|
||||
index = parent2.index(element)
|
||||
if index == 0:
|
||||
left_neighbor2 = parent2[-1]
|
||||
right_neighbor2 = parent2[index + 1]
|
||||
elif index == (len(parent2) - 1):
|
||||
left_neighbor2 = parent2[index - 1]
|
||||
right_neighbor2 = parent2[0]
|
||||
else:
|
||||
left_neighbor2 = parent2[index - 1]
|
||||
right_neighbor2 = parent2[index + 1]
|
||||
|
||||
if left_neighbor2 not in list_of_neighbors:
|
||||
list_of_neighbors.append(left_neighbor2)
|
||||
if right_neighbor2 not in list_of_neighbors:
|
||||
list_of_neighbors.append(right_neighbor2)
|
||||
|
||||
dict_of_neighbors[element] = list_of_neighbors
|
||||
|
||||
return dict_of_neighbors
|
||||
|
||||
|
||||
def mutation_function(population, travel_map):
|
||||
mutation_percentage = random.random()
|
||||
if mutation_percentage <= PERCENT_OF_MUTATION:
|
||||
count_individual_for_mutation = round(len(population) * mutation_percentage)
|
||||
mutants = set()
|
||||
for i in range(0, count_individual_for_mutation):
|
||||
while True:
|
||||
individual_for_mutation = random.randint(0, len(population) - 1)
|
||||
if individual_for_mutation not in mutants:
|
||||
mutants.add(individual_for_mutation)
|
||||
candidate_mutant = population[individual_for_mutation]
|
||||
while True:
|
||||
chromosome1 = random.randint(0, len(candidate_mutant[1]) - 1)
|
||||
chromosome2 = random.randint(0, len(candidate_mutant[1]) - 1)
|
||||
if chromosome1 != chromosome2:
|
||||
candidate_mutant[1][chromosome1], candidate_mutant[1][chromosome2] = candidate_mutant[1][chromosome2], candidate_mutant[1][chromosome1]
|
||||
|
||||
candidate_mutant_priority = adaptation_function(candidate_mutant[1], travel_map)
|
||||
mutant = (candidate_mutant_priority, candidate_mutant[1])
|
||||
|
||||
if mutant not in population:
|
||||
population[individual_for_mutation] = mutant
|
||||
|
||||
break
|
||||
break
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1,15 +1,13 @@
|
||||
from doctest import master
|
||||
from tkinter import *
|
||||
|
||||
# WINDOW_X = 533 + 1200
|
||||
# WINDOW_Y = 950
|
||||
# FRAME_WIDTH = 533
|
||||
# FRAME_HEIGHT = 533
|
||||
#
|
||||
# # Size of small image
|
||||
# IMAGE_SIZE = 50
|
||||
WINDOW_X = 533 + 1200
|
||||
WINDOW_Y = 950
|
||||
FRAME_WIDTH = 533
|
||||
FRAME_HEIGHT = 533
|
||||
|
||||
from resources.Globals import *
|
||||
# Size of small image
|
||||
IMAGE_SIZE = 50
|
||||
|
||||
step = IMAGE_SIZE + 3
|
||||
|
||||
@ -17,38 +15,32 @@ step = IMAGE_SIZE + 3
|
||||
class Field(object):
|
||||
def __init__(self):
|
||||
self.win = Tk()
|
||||
self.width = 555
|
||||
self.height = 555
|
||||
self.width = 533
|
||||
self.height = 533
|
||||
self.image_size = 50
|
||||
self.rows = 10
|
||||
self.columns = 10
|
||||
self.x_start = 5
|
||||
self.y_start = 5
|
||||
self.x_start = 3
|
||||
self.y_start = 3
|
||||
self.state_of_cell_array = [[0 for i in range(3)] for j in range(200)]
|
||||
self.field_state_array = [[False for i in range(self.rows)] for j in range(self.columns)]
|
||||
self.small_image_array = [[0 for i in range(self.rows)] for j in range(self.columns)]
|
||||
self.large_image_array = [[0 for i in range(self.rows)] for j in range(self.columns)]
|
||||
self.cell_expense = [0 for i in range(self.rows * self.columns)]
|
||||
self.visited_mines = []
|
||||
|
||||
# Modified by Artem to search in the status area
|
||||
self.canvas_small_images = []
|
||||
self.rectangle = 0
|
||||
|
||||
self.mines_coord = []
|
||||
|
||||
self.main_frame = Frame(master, width=FRAME_WIDTH, height=FRAME_HEIGHT, bd=0)
|
||||
self.main_frame.pack(anchor=NW)
|
||||
self.small_field_canvas = Canvas(self.main_frame, width=FRAME_WIDTH, height=FRAME_HEIGHT, highlightthickness=0,
|
||||
bg='black')
|
||||
bg='light gray')
|
||||
|
||||
self.small_field_canvas.pack()
|
||||
self.large_image_canvas = Canvas(self.win, width=WINDOW_X - 533 - 20, height=900, highlightthickness=0,
|
||||
bg='gray')
|
||||
self.large_image_canvas.place(x=FRAME_WIDTH + 5, y=3)
|
||||
|
||||
self.flag_img = PhotoImage(master=self.small_field_canvas, file="../../files/flag/Flaga.png")
|
||||
|
||||
# Clear Canvases
|
||||
def Moving(self):
|
||||
self.large_image_canvas.delete('all')
|
||||
@ -63,7 +55,6 @@ class Field(object):
|
||||
# Putting small images
|
||||
for i in range(self.columns):
|
||||
for j in range(self.rows):
|
||||
|
||||
small_image_name = self.small_image_array[column][row]
|
||||
|
||||
self.small_field_canvas.image = small_image_name
|
||||
@ -71,18 +62,12 @@ class Field(object):
|
||||
self.small_field_canvas.create_image(x, y, anchor=NW, image=small_image_name))
|
||||
# self.small_field_canvas.create_image(x, y, anchor=NW, image=small_image_name)
|
||||
|
||||
for k in range(0, len(self.mines_coord)):
|
||||
if self.mines_coord[k][0] == i and self.mines_coord[k][1] == j:
|
||||
new_mine_coord = self.small_field_canvas.coords(self.canvas_small_images[len(self.canvas_small_images) - 1])
|
||||
self.mines_coord[k] = new_mine_coord
|
||||
|
||||
x += self.image_size + self.x_start
|
||||
row += 1
|
||||
y += self.image_size + self.y_start
|
||||
x = self.x_start
|
||||
column += 1
|
||||
row = 0
|
||||
# print(self.mines_coord)
|
||||
|
||||
def PuttingLargeImage(self, large_img_name):
|
||||
self.large_image_canvas.image = large_img_name
|
@ -1,18 +1,16 @@
|
||||
# WINDOW_X = 533 + 1200
|
||||
# WINDOW_Y = 950
|
||||
# FRAME_WIDTH = 533
|
||||
# FRAME_HEIGHT = 533
|
||||
#
|
||||
# # Size of small image
|
||||
# IMAGE_SIZE = 50
|
||||
WINDOW_X = 533 + 1200
|
||||
WINDOW_Y = 950
|
||||
FRAME_WIDTH = 533
|
||||
FRAME_HEIGHT = 533
|
||||
|
||||
from resources.Globals import *
|
||||
# Size of small image
|
||||
IMAGE_SIZE = 50
|
||||
|
||||
|
||||
class Player(object):
|
||||
def __init__(self):
|
||||
self.x_start = 5
|
||||
self.y_start = 5
|
||||
self.x_start = 3
|
||||
self.y_start = 3
|
||||
self.current_x = self.x_start
|
||||
self.current_y = self.y_start
|
||||
self.step = IMAGE_SIZE + self.x_start
|
376
bin/main/main.py
@ -1,37 +1,27 @@
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
from tkinter import *
|
||||
|
||||
from bin.Classess.Field import Field
|
||||
from bin.Classess.Mine import Mine
|
||||
from bin.Classess.Travel import Travel
|
||||
from bin.Classess.Player import Player
|
||||
import bin.Classess.Node as nd
|
||||
import bin.Classess.Travel as tr
|
||||
from resources.Globals import *
|
||||
|
||||
# WINDOW_X = 533 + 1200
|
||||
# WINDOW_Y = 950
|
||||
# FRAME_WIDTH = 533
|
||||
# FRAME_HEIGHT = 533
|
||||
#
|
||||
# # Size of small image
|
||||
# IMAGE_SIZE = 50
|
||||
#
|
||||
# AMOUNT_OF_MINES = 10
|
||||
#
|
||||
# DELAY_TIME = 0.5
|
||||
WINDOW_X = 533 + 1200
|
||||
WINDOW_Y = 950
|
||||
FRAME_WIDTH = 533
|
||||
FRAME_HEIGHT = 533
|
||||
|
||||
# Size of small image
|
||||
IMAGE_SIZE = 50
|
||||
|
||||
AMOUNT_OF_MINES = 10
|
||||
|
||||
# Creating objects
|
||||
player = Player()
|
||||
field = Field()
|
||||
travel = Travel()
|
||||
|
||||
fringe = []
|
||||
explored = []
|
||||
action_list = []
|
||||
images_coord = []
|
||||
|
||||
|
||||
def Arrow(direction):
|
||||
@ -50,25 +40,9 @@ def Arrow(direction):
|
||||
|
||||
# Putting images
|
||||
def Fill(bool):
|
||||
global images_coord
|
||||
if bool:
|
||||
field.PuttingSmallImages()
|
||||
|
||||
travel.points_coord.append(field.small_field_canvas.coords(field.canvas_small_images[0]))
|
||||
travel.points_coord.extend(field.mines_coord)
|
||||
|
||||
for i in range(0, len(travel.points_coord)):
|
||||
travel.points_map[i + 1] = travel.points_coord[i]
|
||||
|
||||
print(travel.points_map)
|
||||
|
||||
|
||||
for i in range(0, len(field.canvas_small_images)):
|
||||
images_coord.append(field.small_field_canvas.coords(field.canvas_small_images[i]))
|
||||
# print("Coords List: ", images_coord)
|
||||
|
||||
nd.init_data(images_coord, field.cell_expense)
|
||||
|
||||
# Drawing red/green rectangles
|
||||
for el in field.state_of_cell_array:
|
||||
if el[0] != 0:
|
||||
@ -84,7 +58,7 @@ def DrawingLargeImage():
|
||||
field.PuttingLargeImage(large_img_name)
|
||||
|
||||
|
||||
def NextDirection(action):
|
||||
def Next_direction(side):
|
||||
# Define next direction
|
||||
current_direction = player.direction
|
||||
t = -1
|
||||
@ -94,9 +68,9 @@ def NextDirection(action):
|
||||
break
|
||||
|
||||
# Write next direction to Player
|
||||
if action == "Right":
|
||||
if side == "Right":
|
||||
player.direction = player.directions[(t + 1) % 4]
|
||||
elif action == "Left":
|
||||
elif side == "Left":
|
||||
player.direction = player.directions[(t - 1) % 4]
|
||||
|
||||
return player.direction
|
||||
@ -113,26 +87,31 @@ def MovingForward():
|
||||
field.small_field_canvas.move(player.image_canvas_id, 0, player.step)
|
||||
|
||||
|
||||
def Moving(action):
|
||||
def Moving(event):
|
||||
# Moving
|
||||
if action == "Right":
|
||||
if event.keysym == "Right":
|
||||
# player.MovingRight()
|
||||
field.Moving()
|
||||
Fill(False)
|
||||
next_direction = NextDirection(action)
|
||||
next_direction = Next_direction(event.keysym)
|
||||
Arrow(next_direction)
|
||||
elif action == "Left":
|
||||
elif event.keysym == "Left":
|
||||
# player.MovingLeft()
|
||||
field.Moving()
|
||||
Fill(False)
|
||||
next_direction = NextDirection(action)
|
||||
next_direction = Next_direction(event.keysym)
|
||||
Arrow(next_direction)
|
||||
elif action == "Up":
|
||||
elif event.keysym == "Up":
|
||||
player.Moving()
|
||||
field.Moving()
|
||||
Fill(False)
|
||||
MovingForward()
|
||||
Arrow(player.direction)
|
||||
# elif event.keysym == "space":
|
||||
# player.MovingDown()
|
||||
# field.Moving()
|
||||
# Fill()
|
||||
# Arrow(player.arrow_south_image)
|
||||
|
||||
|
||||
def ImagesInArray(directory, array):
|
||||
@ -156,15 +135,11 @@ def ImagesInArray(directory, array):
|
||||
if column == 10:
|
||||
column = 0
|
||||
row += 1
|
||||
if row == 10:
|
||||
break
|
||||
|
||||
column += 1
|
||||
if column == 10:
|
||||
column = 0
|
||||
row += 1
|
||||
if row == 10:
|
||||
break
|
||||
|
||||
|
||||
def CellDesignation(array, color):
|
||||
@ -176,151 +151,67 @@ def CellDesignation(array, color):
|
||||
break
|
||||
|
||||
|
||||
def Action(action):
|
||||
if action in ["Right", "Left", "Up", "space"]:
|
||||
Moving(action)
|
||||
elif action in ["1", "2"]:
|
||||
if action == "1":
|
||||
def Action(event):
|
||||
if event.keysym in ["Right", "Left", "Up", "space"]:
|
||||
Moving(event)
|
||||
elif event.keysym in ["1", "2"]:
|
||||
if event.keysym == "1":
|
||||
CellDesignation(field.state_of_cell_array, "red")
|
||||
else:
|
||||
CellDesignation(field.state_of_cell_array, "green")
|
||||
|
||||
|
||||
# Modified by Artem to search in the status area
|
||||
def create_action_list(states, index):
|
||||
def MouseClickEvent(event):
|
||||
global fringe
|
||||
global action_list
|
||||
#print(len(field.canvas_small_images), field.canvas_small_images)
|
||||
for i in range(0, len(field.canvas_small_images)):
|
||||
print(field.small_field_canvas.coords(field.canvas_small_images[i]))
|
||||
#print("Lewy przycisk myszy zostal nacisniety!")
|
||||
#node = nd.Node()
|
||||
#print(node.state.coord, node.state.direction, node.action, node.parent)
|
||||
#node.state = nd.State()
|
||||
#node.state.coord = field.small_field_canvas.coords(player.image_canvas_id)
|
||||
#node.state.direction = "east"
|
||||
#node.state.coord = field.small_field_canvas.coords(field.canvas_small_images[5])
|
||||
|
||||
if index == 0:
|
||||
action_list.reverse()
|
||||
return True
|
||||
action_list.append(fringe[index].action)
|
||||
state_parent = [fringe[index].parent[0], fringe[index].parent[1]]
|
||||
create_action_list(states, states.index(state_parent))
|
||||
start_position = field.small_field_canvas.coords(player.image_canvas_id)
|
||||
end_state_coord = []
|
||||
print("Pierwsza pozycja: {} {}".format(start_position[0], start_position[1]))
|
||||
|
||||
|
||||
def MouseClickEvent(track):
|
||||
global fringe
|
||||
global explored
|
||||
global action_list
|
||||
#print(node.state.coord, node.state.direction, node.parent, node.action)
|
||||
#print("Pozycje myszy: {} {}".format(event.x, event.y))
|
||||
|
||||
print("The best individual is: {} {}".format(track[1], track[0]))
|
||||
for point in range(0, len(track[1]) + 1):
|
||||
start_position = field.small_field_canvas.coords(player.image_canvas_id)
|
||||
if point == len(track[1]):
|
||||
end_position = travel.points_map[1]
|
||||
else:
|
||||
end_position = travel.points_map[track[1][point]]
|
||||
for i in range(0, len(field.canvas_small_images)):
|
||||
img_coords = field.small_field_canvas.coords(field.canvas_small_images[i])
|
||||
if (img_coords[0] <= event.x and event.x <= img_coords[0] + IMAGE_SIZE) and (img_coords[1] <= event.y and event.y <= img_coords[1] + IMAGE_SIZE):
|
||||
end_state_coord = img_coords
|
||||
if len(end_state_coord) == 2:
|
||||
print("Koncowa pozycja: {} {}".format(end_state_coord[0], end_state_coord[1]))
|
||||
|
||||
node = nd.Node()
|
||||
if len(fringe) == 0:
|
||||
node.state.coord = start_position
|
||||
node.state.direction = "east"
|
||||
else:
|
||||
states = []
|
||||
for k in range(0, len(fringe)):
|
||||
new_state = fringe[k].state.coord
|
||||
states.append(new_state)
|
||||
start_node = fringe[-1]
|
||||
node = nd.Node()
|
||||
if len(fringe) == 0:
|
||||
node.state.coord = field.small_field_canvas.coords(player.image_canvas_id)
|
||||
node.state.direction = "east"
|
||||
print("Pierwszy state - OK")
|
||||
else:
|
||||
node = fringe[len(fringe) - 1]
|
||||
print("Pozostale states - OK")
|
||||
|
||||
node.state.coord = start_node.state.coord
|
||||
node.state.direction = start_node.state.direction
|
||||
fringe.clear()
|
||||
print("\nLIST IS EMPTY: {}\n".format(fringe))
|
||||
explored.clear()
|
||||
print("Czyszczenie list - OK")
|
||||
|
||||
fringe.clear()
|
||||
explored.clear()
|
||||
action_list.clear()
|
||||
fringe = nd.graph_search_A(fringe, explored, node.state, end_position)
|
||||
# fringe = nd.graph_search(fringe, explored, node.state, end_position)
|
||||
# Successor - only east
|
||||
fringe = nd.graphsearch(fringe, explored, node.state, end_state_coord)
|
||||
print("Fringe - OK")
|
||||
#print(fringe)
|
||||
|
||||
states = []
|
||||
goal_all = []
|
||||
for i in range(0, len(fringe)):
|
||||
new_state = [fringe[i].state.coord, fringe[i].state.direction]
|
||||
states.append(new_state)
|
||||
if end_position[0] == fringe[i].state.coord[0] and end_position[1] == fringe[i].state.coord[1]:
|
||||
goal_all.append(fringe[i])
|
||||
|
||||
elem_min = goal_all[0]
|
||||
for i in range(1, len(goal_all)):
|
||||
if elem_min.priority > goal_all[i].priority:
|
||||
elem_min = goal_all[i]
|
||||
index = fringe.index(elem_min)
|
||||
fringe = fringe[:index + 1]
|
||||
|
||||
create_action_list(states, -1)
|
||||
|
||||
# for i in range(0, len(fringe)):
|
||||
# print('Node{} = State: {} {}, Parent: {} {} {}, Action: {}'.format(i + 1, fringe[i].state.coord, fringe[i].state.direction, fringe[i].parent[0], fringe[i].parent[1], fringe[i].parent[2], fringe[i].action))
|
||||
|
||||
# print(action_list)
|
||||
|
||||
# Start moving
|
||||
AutoMove()
|
||||
DrawFlag()
|
||||
|
||||
time.sleep(SLEEP_AFTER_CHECK_MINE)
|
||||
|
||||
|
||||
# start_position = field.small_field_canvas.coords(player.image_canvas_id)
|
||||
# end_position = []
|
||||
#
|
||||
# # print("Pierwsza pozycja: {} {}".format(start_position[0], start_position[1]))
|
||||
#
|
||||
# for i in range(0, len(field.canvas_small_images)):
|
||||
# img_coords = field.small_field_canvas.coords(field.canvas_small_images[i])
|
||||
# if (img_coords[0] <= event.x and event.x <= img_coords[0] + IMAGE_SIZE) and (img_coords[1] <= event.y and event.y <= img_coords[1] + IMAGE_SIZE):
|
||||
# end_position = img_coords
|
||||
# print("Color cost: ", field.cell_expense[i])
|
||||
#
|
||||
# # if len(end_position) == 2:
|
||||
# # print("Koncowa pozycja: {} {}".format(end_position[0], end_position[1]))
|
||||
#
|
||||
# node = nd.Node()
|
||||
# if len(fringe) == 0:
|
||||
# node.state.coord = start_position
|
||||
# node.state.direction = "east"
|
||||
# else:
|
||||
# states = []
|
||||
# for k in range(0, len(fringe)):
|
||||
# new_state = fringe[k].state.coord
|
||||
# states.append(new_state)
|
||||
# start_node = fringe[-1]
|
||||
#
|
||||
# node.state.coord = start_node.state.coord
|
||||
# node.state.direction = start_node.state.direction
|
||||
#
|
||||
# fringe.clear()
|
||||
# explored.clear()
|
||||
# action_list.clear()
|
||||
# fringe = nd.graph_search_A(fringe, explored, node.state, end_position)
|
||||
# # fringe = nd.graph_search(fringe, explored, node.state, end_position)
|
||||
#
|
||||
# states = []
|
||||
# goal_all = []
|
||||
# for i in range(0, len(fringe)):
|
||||
# new_state = [fringe[i].state.coord, fringe[i].state.direction]
|
||||
# states.append(new_state)
|
||||
# if end_position[0] == fringe[i].state.coord[0] and end_position[1] == fringe[i].state.coord[1]:
|
||||
# goal_all.append(fringe[i])
|
||||
#
|
||||
# elem_min = goal_all[0]
|
||||
# for i in range(1, len(goal_all)):
|
||||
# if elem_min.priority > goal_all[i].priority:
|
||||
# elem_min = goal_all[i]
|
||||
# index = fringe.index(elem_min)
|
||||
# fringe = fringe[:index + 1]
|
||||
#
|
||||
# create_action_list(states, -1)
|
||||
#
|
||||
# # for i in range(0, len(fringe)):
|
||||
# # print('Node{} = State: {} {}, Parent: {} {} {}, Action: {}'.format(i + 1, fringe[i].state.coord, fringe[i].state.direction, fringe[i].parent[0], fringe[i].parent[1], fringe[i].parent[2], fringe[i].action))
|
||||
#
|
||||
# print(action_list)
|
||||
#
|
||||
#
|
||||
#
|
||||
# # Start moving
|
||||
# AutoMove()
|
||||
print("{}".format(fringe))
|
||||
for i in range(0, len(fringe)):
|
||||
print('Node{} = State: {} {}, Parent: {} {}, Action: {}'.format(i + 1, fringe[i].state.coord, fringe[i].state.direction, fringe[i].parent.coord, fringe[i].parent.direction, fringe[i].action))
|
||||
|
||||
|
||||
def PutMines(mines_array):
|
||||
@ -336,18 +227,15 @@ def PutMines(mines_array):
|
||||
if mine.array_x == x and mine.array_y == y:
|
||||
is_equal = True
|
||||
if not is_equal:
|
||||
if x == 0 and y == 0:
|
||||
continue
|
||||
else:
|
||||
mine = Mine(x, y)
|
||||
mines_array.append(mine)
|
||||
mine = Mine(x, y)
|
||||
mines_array.append(mine)
|
||||
|
||||
field.field_state_array[x][y] = True
|
||||
field.field_state_array[x][y] = True
|
||||
|
||||
counter += 1
|
||||
counter += 1
|
||||
|
||||
|
||||
def MinesInArrays(mines_array, directory, imgs_array, bool_mines_coord):
|
||||
def MinesInArrays(mines_array, directory, imgs_array):
|
||||
counter = 0
|
||||
|
||||
temp_array = []
|
||||
@ -386,99 +274,6 @@ def MinesInArrays(mines_array, directory, imgs_array, bool_mines_coord):
|
||||
# Add images in image array
|
||||
imgs_array[mines_array[i].array_x][mines_array[i].array_y] = temp_array[i]
|
||||
|
||||
if bool_mines_coord:
|
||||
for i in range(len(mines_array)):
|
||||
field.mines_coord.append([mines_array[i].array_x, mines_array[i].array_y])
|
||||
|
||||
|
||||
def DrawFlag():
|
||||
field.small_field_canvas.create_image(player.current_x, player.current_y, anchor=NW, image=field.flag_img)
|
||||
|
||||
|
||||
# def IsItMine():
|
||||
# visited = 0 # 0 - not mine; 1 - on this mine for the first time; 2 - already been on this mine
|
||||
#
|
||||
# # Checks if the player is on the mine
|
||||
# for i in field.mines_coord:
|
||||
# if i[0] == player.current_x and i[1] == player.current_y:
|
||||
# visited = 1
|
||||
# # Checks if the player has already been on this mine
|
||||
# for y in field.visited_mines:
|
||||
# if y[0] == player.current_x and y[1] == player.current_y:
|
||||
# visited = 2
|
||||
# if visited == 1:
|
||||
# DrawFlag()
|
||||
|
||||
|
||||
def AutoMove():
|
||||
for action in action_list:
|
||||
# Program wait for better illustration
|
||||
time.sleep(DELAY_TIME)
|
||||
# Move once
|
||||
Action(action)
|
||||
# Check if player on mine and if yes, draw flag
|
||||
# IsItMine()
|
||||
# Update main window
|
||||
field.win.update()
|
||||
|
||||
|
||||
# Draws rectangles that indicate type of cells
|
||||
def DrawRectangle():
|
||||
x = 4
|
||||
y = 4
|
||||
|
||||
color = None
|
||||
# Chose color for rectangle
|
||||
for i in range(len(field.cell_expense)):
|
||||
if field.cell_expense[i] == standard_cell_cost:
|
||||
color = "None"
|
||||
elif field.cell_expense[i] == sand_cell_cost:
|
||||
color = "yellow"
|
||||
elif field.cell_expense[i] == water_cell_cost:
|
||||
color = "dodger blue"
|
||||
elif field.cell_expense[i] == swamp_cell_cost:
|
||||
color = "green4"
|
||||
if color != "None":
|
||||
field.small_field_canvas.create_rectangle(x, y, x + IMAGE_SIZE + 2, y + IMAGE_SIZE + 2, width=2, outline=color)
|
||||
x += player.step
|
||||
if x + IMAGE_SIZE + 2 > field.width:
|
||||
x = 4
|
||||
y += player.step
|
||||
|
||||
|
||||
|
||||
|
||||
def AddCostCellsToArray(amount, cost):
|
||||
counter = 0
|
||||
while counter < amount:
|
||||
r = random.randint(0, 99)
|
||||
if field.cell_expense[r] == 0:
|
||||
field.cell_expense[r] = cost
|
||||
counter += 1
|
||||
|
||||
|
||||
def CostingOfCells():
|
||||
AddCostCellsToArray(amount_of_sand_cells, sand_cell_cost)
|
||||
AddCostCellsToArray(amount_of_water_cells, water_cell_cost)
|
||||
AddCostCellsToArray(amount_of_swamp_cells, swamp_cell_cost)
|
||||
AddCostCellsToArray(field.rows * field.columns - (amount_of_sand_cells + amount_of_water_cells + amount_of_swamp_cells), standard_cell_cost)
|
||||
|
||||
# Draw rectangles
|
||||
DrawRectangle()
|
||||
|
||||
|
||||
def click_button():
|
||||
btn.destroy()
|
||||
label = Label(field.win, text="Wait... AI conquers the world!", fg='black')
|
||||
label.place(x=50, y=570)
|
||||
field.win.update()
|
||||
track = tr.genetic_algorithm(travel.points_map)
|
||||
|
||||
track[1].remove(1)
|
||||
label.config(text=track[1])
|
||||
field.win.update()
|
||||
MouseClickEvent(track)
|
||||
|
||||
|
||||
def main():
|
||||
# Creating the main window of an application
|
||||
@ -486,27 +281,14 @@ def main():
|
||||
field.win.title("Sapper")
|
||||
field.win.configure(bg='gray')
|
||||
field.win.geometry(win_size)
|
||||
print(f'Amount of mines: {AMOUNT_OF_MINES}')
|
||||
global btn
|
||||
btn = Button(field.win,
|
||||
text="Search for mines", # текст кнопки
|
||||
background="#555", # фоновый цвет кнопки
|
||||
foreground="#ccc", # цвет текста
|
||||
padx="20", # отступ от границ до содержимого по горизонтали
|
||||
pady="8", # отступ от границ до содержимого по вертикали
|
||||
font="24", # высота шрифта
|
||||
command=click_button
|
||||
)
|
||||
|
||||
btn.place(x=50, y=570)
|
||||
|
||||
# Create array with mines objects
|
||||
mines_array = []
|
||||
# Put mines on coordinates
|
||||
PutMines(mines_array)
|
||||
|
||||
MinesInArrays(mines_array, "../../files/small_mines_images", field.small_image_array, True)
|
||||
MinesInArrays(mines_array, "../../files/large_mines_images", field.large_image_array, False)
|
||||
MinesInArrays(mines_array, "../../files/small_mines_images", field.small_image_array)
|
||||
MinesInArrays(mines_array, "../../files/large_mines_images", field.large_image_array)
|
||||
|
||||
# Filling image arrays
|
||||
small_directory = "../../files/small_images"
|
||||
@ -514,8 +296,6 @@ def main():
|
||||
large_directory = "../../files/large_images"
|
||||
ImagesInArray(large_directory, field.large_image_array)
|
||||
|
||||
CostingOfCells()
|
||||
|
||||
# Add arrow image to Player class
|
||||
images = []
|
||||
for file in os.listdir("../../files/arrow"):
|
||||
@ -538,8 +318,8 @@ def main():
|
||||
# Rectangle(True, "None")
|
||||
# Rectangle()
|
||||
# Binding keyboard press to function
|
||||
# field.win.bind("<Key>", Action)
|
||||
# field.small_field_canvas.bind("<Button-1>", MouseClickEvent)
|
||||
field.win.bind("<Key>", Action)
|
||||
field.small_field_canvas.bind("<Button-1>", MouseClickEvent)
|
||||
# Starting mainloop for window
|
||||
field.win.mainloop()
|
||||
|
||||
|
Before Width: | Height: | Size: 372 B |
Before Width: | Height: | Size: 1.4 MiB |
Before Width: | Height: | Size: 1.4 MiB |
Before Width: | Height: | Size: 1.4 MiB |
Before Width: | Height: | Size: 1.4 MiB |
Before Width: | Height: | Size: 1.4 MiB |
Before Width: | Height: | Size: 1.4 MiB |
Before Width: | Height: | Size: 1.4 MiB |
Before Width: | Height: | Size: 1.4 MiB |
Before Width: | Height: | Size: 1.4 MiB |
Before Width: | Height: | Size: 1.4 MiB |
Before Width: | Height: | Size: 5.3 KiB |
Before Width: | Height: | Size: 5.3 KiB |
Before Width: | Height: | Size: 5.3 KiB |
Before Width: | Height: | Size: 5.3 KiB |
Before Width: | Height: | Size: 5.3 KiB |
Before Width: | Height: | Size: 5.3 KiB |
Before Width: | Height: | Size: 5.3 KiB |
Before Width: | Height: | Size: 5.3 KiB |
Before Width: | Height: | Size: 5.3 KiB |
Before Width: | Height: | Size: 5.3 KiB |
@ -1,38 +0,0 @@
|
||||
import random
|
||||
|
||||
FRAME_WIDTH = 555
|
||||
FRAME_HEIGHT = 555
|
||||
|
||||
WINDOW_X = FRAME_WIDTH + 1200
|
||||
WINDOW_Y = 950
|
||||
|
||||
# Size of small image
|
||||
IMAGE_SIZE = 50
|
||||
|
||||
MIN_AMOUNT_OF_MINES = 6
|
||||
MAX_AMOUNT_OF_MINES = 11
|
||||
AMOUNT_OF_MINES = random.randint(MIN_AMOUNT_OF_MINES, MAX_AMOUNT_OF_MINES)
|
||||
|
||||
DELAY_TIME = 0.2
|
||||
|
||||
STEP = IMAGE_SIZE + 5
|
||||
|
||||
standard_cell_cost = 10
|
||||
|
||||
amount_of_sand_cells = 10
|
||||
sand_cell_cost = 20
|
||||
|
||||
amount_of_water_cells = 10
|
||||
water_cell_cost = 40
|
||||
|
||||
amount_of_swamp_cells = 10
|
||||
swamp_cell_cost = 80
|
||||
|
||||
x_start = 5
|
||||
y_start = 5
|
||||
|
||||
NUMBER_OF_INDIVIDUALS_FOR_DUEL = 4
|
||||
NUMBER_OF_POINTS_PERMUTATION = 10
|
||||
PERCENT_OF_MUTATION = 0.01
|
||||
PERCENT_OF_OUTGOING_INDIVIDUALS = 0.03
|
||||
SLEEP_AFTER_CHECK_MINE = 1
|