SI_projekt_smieciarka/trash.py

53 lines
1.8 KiB
Python
Raw Normal View History

2021-06-23 00:09:58 +02:00
from keras.models import Sequential, load_model
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.layers.normalization import BatchNormalization
from PIL import Image
import numpy as np
import os
2021-06-13 15:14:55 +02:00
import random
from house import is_house
2021-06-23 00:09:58 +02:00
IMAGE_SIZE = 256
IMAGE_DIRECTORY = './trash'
filenames = next(os.walk(IMAGE_DIRECTORY), (None, None, []))[2]
model = load_model("model.h5")
def draw_trash(files):
random_trash = []
random_trash_names = []
random_trash_reshape = []
for i in range(3):
image_name = random.choice(files)
image_path = os.path.join(IMAGE_DIRECTORY, image_name)
img = Image.open(image_path)
img = img.convert('L')
img = img.resize((IMAGE_SIZE, IMAGE_SIZE), Image.ANTIALIAS)
random_trash_names.append(image_name)
random_trash.append(np.array(img))
random_trash_reshape = np.array([i for i in random_trash]).reshape(-1, IMAGE_SIZE, IMAGE_SIZE, 1)
return random_trash_reshape, random_trash_names
2021-06-13 15:14:55 +02:00
class Trash:
def __init__(self, grid_w, grid_h, grid_size):
self.grid_w = grid_w
self.grid_h = grid_h
self.size = grid_size
2021-06-23 00:09:58 +02:00
self.content = draw_trash(filenames)[0]
self.names = draw_trash(filenames)[1]
2021-06-13 15:14:55 +02:00
2021-06-15 20:24:06 +02:00
def new_pos(self, truck_pos, houses, multi):
2021-06-23 00:09:58 +02:00
self.trash_content, self.trash_names = draw_trash(filenames)
2021-06-13 15:14:55 +02:00
while True:
self.pos = [random.randrange(0, self.grid_w, self.size),
random.randrange(0, self.grid_h, self.size)]
2021-06-15 20:24:06 +02:00
if self.pos != truck_pos and not is_house(self.pos, houses) and self not in multi:
2021-06-13 15:14:55 +02:00
break
2021-06-15 20:24:06 +02:00
def __eq__(self, other):
if isinstance(self, Trash):
return self.pos == other.pos
return False