48 lines
1.5 KiB
Python
48 lines
1.5 KiB
Python
from keras.models import Sequential, load_model
|
|
from keras.layers import Dense, Dropout, Flatten
|
|
from keras.layers import Conv2D, MaxPooling2D
|
|
from keras.layers.normalization import BatchNormalization
|
|
from PIL import Image
|
|
from random import shuffle, choice
|
|
import numpy as np
|
|
import os
|
|
|
|
IMAGE_SIZE = 256
|
|
IMAGE_DIRECTORY = './data/test_set'
|
|
|
|
def label_img(name):
|
|
if name == 'cats': return np.array([1, 0])
|
|
elif name == 'notcats' : return np.array([0, 1])
|
|
|
|
|
|
def load_data():
|
|
print("Loading images...")
|
|
test_data = []
|
|
directories = next(os.walk(IMAGE_DIRECTORY))[1]
|
|
|
|
for dirname in directories:
|
|
print("Loading {0}".format(dirname))
|
|
file_names = next(os.walk(os.path.join(IMAGE_DIRECTORY, dirname)))[2]
|
|
for i in range(len(file_names)):
|
|
image_name = choice(file_names)
|
|
image_path = os.path.join(IMAGE_DIRECTORY, dirname, image_name)
|
|
if image_name != ".DS_Store":
|
|
label = label_img(dirname)
|
|
img = Image.open(image_path)
|
|
img = img.convert('L')
|
|
img = img.resize((IMAGE_SIZE, IMAGE_SIZE), Image.ANTIALIAS)
|
|
test_data.append([np.array(img), label])
|
|
|
|
return test_data
|
|
|
|
test_data = load_data()
|
|
test_images = np.array([i[0] for i in test_data]).reshape(-1, IMAGE_SIZE, IMAGE_SIZE, 1)
|
|
test_labels = np.array([i[1] for i in test_data])
|
|
|
|
print('Loading model...')
|
|
model = load_model("model.h5")
|
|
|
|
print('Testing model...')
|
|
loss, acc = model.evaluate(test_images, test_labels, verbose=1)
|
|
|
|
print("accuracy: {0}".format(acc * 100)) |