39 lines
984 B
Python
39 lines
984 B
Python
|
from tkinter import PhotoImage
|
||
|
|
||
|
import cv2
|
||
|
import tensorflow as tf
|
||
|
import numpy as np
|
||
|
from keras_preprocessing.image import ImageDataGenerator
|
||
|
|
||
|
from bin.Classess.Field import Field
|
||
|
|
||
|
field = Field()
|
||
|
|
||
|
CATEGORIES = ['houses', 'other']
|
||
|
|
||
|
|
||
|
def prepare(filepath):
|
||
|
IMG_SIZE = 400
|
||
|
# img_array = cv2.imread(filepath)
|
||
|
# new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
|
||
|
image = PhotoImage(master=field.small_field_canvas, file="E:/Projects/Pycharm Projects/sapper/files/large_images_houses/IMG_2540.png")
|
||
|
|
||
|
# image =
|
||
|
|
||
|
new_array = np.array(image) / 255
|
||
|
return new_array.reshape(1, IMG_SIZE, IMG_SIZE, 3)
|
||
|
|
||
|
|
||
|
model = tf.keras.models.load_model("../../files/Neural_networks/model/training_test")
|
||
|
model.summary()
|
||
|
|
||
|
test = prepare("E:/Projects/Pycharm Projects/sapper/files/large_images_houses/IMG_2540.png")
|
||
|
|
||
|
|
||
|
pred = test
|
||
|
|
||
|
prediction = model.predict([pred])
|
||
|
print('after predict')
|
||
|
print(prediction) # will be a list in a list.
|
||
|
print(CATEGORIES[int(prediction[0][0])])
|