PreNeuralNetwork

This commit is contained in:
Andrzej 2021-06-19 06:58:59 +02:00
parent 29061f54ad
commit efda9dd3e9
3 changed files with 57 additions and 0 deletions

View File

@ -1,4 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?> <?xml version="1.0" encoding="UTF-8"?>
<project version="4"> <project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.7" project-jdk-type="Python SDK" /> <component name="ProjectRootManager" version="2" project-jdk-name="Python 3.7" project-jdk-type="Python SDK" />
<component name="PyCharmProfessionalAdvertiser">
<option name="shown" value="true" />
</component>
</project> </project>

40
bin/Main/NeuralNetwork.py Normal file
View File

@ -0,0 +1,40 @@
import matplotlib.pyplot as plt
import seaborn as sns
import keras
from keras.models import Sequential
from keras.layers import Dense, Conv2D , MaxPool2D , Flatten , Dropout
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import Adam
from sklearn.metrics import classification_report,confusion_matrix
import tensorflow as tf
import cv2
import os
import numpy as np
def main():
labels = ['house', 'other']
img_size = 500
def get_data(data_dir):
data = []
for label in labels:
path = os.path.join(data_dir, label)
class_num = labels.index(label)
for img in os.listdir(path):
try:
img_arr = cv2.imread(os.path.join(path, img))[..., ::-1] # Convert BGR to RGB format
resized_arr = cv2.resize(img_arr, (img_size, img_size)) # Reshaping images to preferred size
data.append([resized_arr, class_num])
except Exception as e:
print(e)
return np.array(data)
if __name__ == '__main__':
main()

14
bin/Main/temp.py Normal file
View File

@ -0,0 +1,14 @@
import tensorflow as tf
from tensorflow import keras
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
fashion_mnist = keras.datasets.fashion_mnist
(X_train_full, y_train_full), (X_test, y_test) = fashion_mnist.load_data()
# 16777216 - because 24 bits color pixels = 2^24
X_valid, X_train = X_train_full[:5000] / 16777216., X_train_full[5000:] / 16777216.
y_valid, y_train = y_train_full[:5000], y_train_full[5000:]
X_test = X_test / 16777216