from tkinter import PhotoImage import cv2 import tensorflow as tf import numpy as np from keras_preprocessing.image import ImageDataGenerator from bin.Classess.Field import Field field = Field() CATEGORIES = ['houses', 'other'] def prepare(filepath): IMG_SIZE = 400 # img_array = cv2.imread(filepath) # new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) image = PhotoImage(master=field.small_field_canvas, file="E:/Projects/Pycharm Projects/sapper/files/large_images_houses/IMG_2540.png") # image = new_array = np.array(image) / 255 return new_array.reshape(1, IMG_SIZE, IMG_SIZE, 3) model = tf.keras.models.load_model("../../files/Neural_networks/model/training_test") model.summary() test = prepare("E:/Projects/Pycharm Projects/sapper/files/large_images_houses/IMG_2540.png") pred = test prediction = model.predict([pred]) print('after predict') print(prediction) # will be a list in a list. print(CATEGORIES[int(prediction[0][0])])