48 lines
1.1 KiB
Python
48 lines
1.1 KiB
Python
from tkinter import PhotoImage
|
|
|
|
import cv2
|
|
import tensorflow as tf
|
|
import numpy as np
|
|
from keras_preprocessing.image import ImageDataGenerator
|
|
|
|
from bin.Classess.Field import Field
|
|
|
|
field = Field()
|
|
|
|
CATEGORIES = ['houses', 'other']
|
|
|
|
|
|
def prepare(filepath):
|
|
IMG_SIZE = 400
|
|
img_array = cv2.imread(filepath)
|
|
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
|
|
new_array = np.array(new_array) / 255
|
|
return new_array.reshape(1, IMG_SIZE, IMG_SIZE, 3)
|
|
|
|
|
|
model = tf.keras.models.load_model("../../files/Neural_networks/model/training_2")
|
|
model.summary()
|
|
|
|
test = prepare("E:/Projects/Pycharm Projects/sapper/files/large_images_houses/IMG_2573.png")
|
|
# test = prepare("E:/Projects/Pycharm Projects/sapper/files/large_images/IMG_3208.png")
|
|
|
|
|
|
pred = test
|
|
|
|
prediction = model.predict([pred])
|
|
print(prediction) # will be a list in a list.
|
|
|
|
house = prediction[0][0]
|
|
other = prediction[0][1]
|
|
|
|
if house > other:
|
|
prediction = 0
|
|
else:
|
|
prediction = 1
|
|
|
|
print(f'house: {house}\nother: {other}')
|
|
|
|
print(f'prediction: {prediction}')
|
|
|
|
print(CATEGORIES[int(prediction[0][0])])
|