Sztuczna_inteligencja_gr_13/bin/Classess/DecisionTree.py
2021-06-19 04:08:21 +02:00

39 lines
1.1 KiB
Python

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report, confusion_matrix
from joblib import dump, load
class DecisionTree:
def __init__(self):
self.classifier = load('../../files/decision tree/classifier.joblib')
def Learning():
# Uploading data from file
dataset = pd.read_csv("../../files/decision tree/database.csv")
print(f'Shape: {dataset.shape}')
print(f'Head:\n{dataset.head()}')
X = dataset.drop('decision', axis=1)
y = dataset['decision']
# Split data to training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
# Training
classifier = DecisionTreeClassifier()
classifier.fit(X_train, y_train)
# Predictions test
y_pred = classifier.predict(X_test)
print()
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
# Save predictions
dump(classifier, '../../files/decision tree/classifier.joblib')