import tensorflow as tf import numpy as np from tensorflow import keras import os import random from PIL import Image img_height = 180 img_width = 180 class_names=['glass','metal','paper','plastic'] model = tf.keras.models.load_model('./saved_model_vers2') def predict(): path="./dane_testowe" files=os.listdir(path) d=random.choice(files) im = Image.open("./dane_testowe/" + d) im.show() img = keras.preprocessing.image.load_img( "./dane_testowe/" + d, target_size=(img_height, img_width) ) img_array = keras.preprocessing.image.img_to_array(img) img_array = tf.expand_dims(img_array, 0) # Create a batch predictions = model.predict(img_array) score = tf.nn.softmax(predictions[0]) print( "This image most likely belongs to {} with a {:.2f} percent confidence." .format(class_names[np.argmax(score)], 100 * np.max(score)) )