32 lines
936 B
Python
32 lines
936 B
Python
import tensorflow as tf
|
|
import numpy as np
|
|
from tensorflow import keras
|
|
import os
|
|
import random
|
|
from PIL import Image
|
|
|
|
img_height = 180
|
|
img_width = 180
|
|
class_names=['glass','metal','paper','plastic']
|
|
model = tf.keras.models.load_model('./saved_model_vers2')
|
|
def predict():
|
|
path="./dane_testowe"
|
|
files=os.listdir(path)
|
|
d=random.choice(files)
|
|
im = Image.open("./dane_testowe/" + d)
|
|
im.show()
|
|
img = keras.preprocessing.image.load_img(
|
|
"./dane_testowe/" + d, target_size=(img_height, img_width)
|
|
)
|
|
img_array = keras.preprocessing.image.img_to_array(img)
|
|
img_array = tf.expand_dims(img_array, 0) # Create a batch
|
|
predictions = model.predict(img_array)
|
|
|
|
score = tf.nn.softmax(predictions[0])
|
|
|
|
print(
|
|
"This image most likely belongs to {} with a {:.2f} percent confidence."
|
|
.format(class_names[np.argmax(score)], 100 * np.max(score))
|
|
|
|
)
|