neural
This commit is contained in:
parent
a51f3e31dc
commit
8ac677941c
45
tiles.py
45
tiles.py
@ -13,7 +13,6 @@ import matplotlib.pyplot as plt
|
|||||||
import os
|
import os
|
||||||
import cv2
|
import cv2
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
import keras
|
|
||||||
from keras.models import Sequential
|
from keras.models import Sequential
|
||||||
from keras.layers import Dense, Dropout, Activation, Flatten
|
from keras.layers import Dense, Dropout, Activation, Flatten
|
||||||
from keras.layers import Conv2D, MaxPooling2D
|
from keras.layers import Conv2D, MaxPooling2D
|
||||||
@ -620,6 +619,10 @@ def learn_neural_network(X, y):
|
|||||||
model.add(Activation('relu'))
|
model.add(Activation('relu'))
|
||||||
model.add(MaxPooling2D(pool_size=(2, 2)))
|
model.add(MaxPooling2D(pool_size=(2, 2)))
|
||||||
|
|
||||||
|
model.add(Conv2D(64, (3, 3)))
|
||||||
|
model.add(Activation('relu'))
|
||||||
|
model.add(MaxPooling2D(pool_size=(2, 2)))
|
||||||
|
|
||||||
model.add(Flatten())
|
model.add(Flatten())
|
||||||
|
|
||||||
model.add(Dense(64))
|
model.add(Dense(64))
|
||||||
@ -631,7 +634,7 @@ def learn_neural_network(X, y):
|
|||||||
optimizer='adam',
|
optimizer='adam',
|
||||||
metrics=['accuracy'])
|
metrics=['accuracy'])
|
||||||
|
|
||||||
model.fit(X, y, batch_size=1, epochs=10, validation_batch_size=0.1)
|
model.fit(X, y, batch_size=32, epochs=10, validation_batch_size=0.1)
|
||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
||||||
@ -649,38 +652,15 @@ def predict(model,filepath):
|
|||||||
|
|
||||||
def result(prediction):
|
def result(prediction):
|
||||||
if prediction[0][0] >= 0.5:
|
if prediction[0][0] >= 0.5:
|
||||||
|
print(prediction)
|
||||||
print(math.ceil(prediction[0][0]))
|
print(math.ceil(prediction[0][0]))
|
||||||
print('No pepperoni')
|
print('No pepperoni')
|
||||||
elif prediction[0][0] < 0.5:
|
elif prediction[0][0] < 0.5:
|
||||||
|
print(prediction)
|
||||||
print(math.floor(prediction[0][0]))
|
print(math.floor(prediction[0][0]))
|
||||||
print("Pepperoni")
|
print("Pepperoni")
|
||||||
|
|
||||||
|
|
||||||
#####################neural network##############################
|
|
||||||
|
|
||||||
DATADIR = "C:/Datasets/Ingridients"
|
|
||||||
CATEGORIES = ["yes", "no"]
|
|
||||||
IMG_SIZE = 90
|
|
||||||
training_data = []
|
|
||||||
|
|
||||||
create_training_data()
|
|
||||||
X = []
|
|
||||||
y = []
|
|
||||||
|
|
||||||
for features, label in training_data:
|
|
||||||
X.append(features)
|
|
||||||
y.append(label)
|
|
||||||
X = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
|
|
||||||
y = np.array(y)
|
|
||||||
"""
|
|
||||||
m = learn_neural_network(X, y)
|
|
||||||
prediction = m.predict([prepare_img('p1.jpg')])
|
|
||||||
print(prediction[0][0])
|
|
||||||
result(prediction)
|
|
||||||
"""
|
|
||||||
|
|
||||||
#######################################################
|
|
||||||
|
|
||||||
map = Map()
|
map = Map()
|
||||||
waiter = Waiter([32, 32])
|
waiter = Waiter([32, 32])
|
||||||
|
|
||||||
@ -703,6 +683,7 @@ for table in tables:
|
|||||||
|
|
||||||
client = Client(generate_client())
|
client = Client(generate_client())
|
||||||
|
|
||||||
|
neural_prediction_in = False
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
direction = []
|
direction = []
|
||||||
@ -810,10 +791,16 @@ def main():
|
|||||||
image = pygame.image.load(path)
|
image = pygame.image.load(path)
|
||||||
first_time = False
|
first_time = False
|
||||||
display_img(display, image)
|
display_img(display, image)
|
||||||
prediction = predict(model, path)
|
if neural_prediction_in is False:
|
||||||
result(prediction)
|
prediction = predict(model, path)
|
||||||
|
result(prediction)
|
||||||
|
neural_prediction_in = True
|
||||||
|
|
||||||
else:
|
else:
|
||||||
first_time = True
|
first_time = True
|
||||||
|
neural_prediction_in = False
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
pygame.display.update()
|
pygame.display.update()
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user