po naciśnieciu "e" sieć sie uczy, po podjeściu do prawego górnego odpalane jest prediction

This commit is contained in:
Michał Szuszert 2022-05-26 16:16:16 +02:00
parent 5f198cde38
commit a51f3e31dc

View File

@ -13,6 +13,7 @@ import matplotlib.pyplot as plt
import os
import cv2
from tqdm import tqdm
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
@ -642,8 +643,8 @@ def prepare_img(filepath):
return new_array.reshape(-1, IMG_SIZE, IMG_SIZE, 1) / 255
def predict(model):
return model.predict([prepare_img('directory')])
def predict(model,filepath):
return model.predict([prepare_img(filepath)])
def result(prediction):
@ -733,6 +734,11 @@ def main():
key = pygame.key.get_pressed()
left, middle, right = pygame.mouse.get_pressed()
if key[pygame.K_e]:
X, y = create_training_data()
model = learn_neural_network(X,y)
if middle:
waiterGo(mouseToNum())
elif right:
@ -800,9 +806,12 @@ def main():
if waiter.loc == [576, 32]:
if first_time:
number = np.random.randint(20)
image = pygame.image.load('test/' + str(number) + '.jpg')
path = ('test/' + str(number) + '.jpg')
image = pygame.image.load(path)
first_time = False
display_img(display, image)
prediction = predict(model, path)
result(prediction)
else:
first_time = True