875 lines
26 KiB
Python
875 lines
26 KiB
Python
import random
|
|
import time
|
|
import numpy as np
|
|
import pygame
|
|
import pytmx
|
|
from queue import Queue
|
|
import pandas as pd
|
|
from pygame import surface
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.tree import DecisionTreeClassifier
|
|
import json
|
|
import openpyxl
|
|
import matplotlib.pyplot as plt
|
|
import os
|
|
import cv2
|
|
from tqdm import tqdm
|
|
from keras.models import Sequential
|
|
from keras.layers import Dense, Dropout, Activation, Flatten
|
|
from keras.layers import Conv2D, MaxPooling2D
|
|
import math
|
|
|
|
pygame.init()
|
|
|
|
display = pygame.display.set_mode((640, 640))
|
|
clock = pygame.time.Clock()
|
|
gameMap = pytmx.load_pygame("cafe.tmx")
|
|
waiterImg = pygame.image.load("waiter.png")
|
|
waiterImgD = pygame.image.load("waiterD.png")
|
|
waiterImgL = pygame.image.load("waiterL.png")
|
|
waiterImgR = pygame.image.load("waiterR.png")
|
|
tableImg = pygame.image.load('table.png')
|
|
chairImg = pygame.image.load('chair.png')
|
|
messImg = pygame.image.load('mess.png')
|
|
messImg2 = pygame.image.load('trash.png')
|
|
messImg3 = pygame.image.load('can.png')
|
|
clientImg = pygame.image.load('client.png')
|
|
image = pygame.image.load('test/0.jpg')
|
|
|
|
class Waiter:
|
|
def __init__(self, loc):
|
|
self.loc = loc
|
|
|
|
def render(self, surface):
|
|
surface.blit(waiterImg, (self.loc[0], self.loc[1]))
|
|
|
|
def handle_events(self):
|
|
key = pygame.key.get_pressed()
|
|
if key[pygame.K_w] or key[pygame.K_UP]:
|
|
self.loc[1] -= 32
|
|
elif key[pygame.K_s] or key[pygame.K_DOWN]:
|
|
self.loc[1] += 32
|
|
elif key[pygame.K_a] or key[pygame.K_LEFT]:
|
|
self.loc[0] -= 32
|
|
elif key[pygame.K_d] or key[pygame.K_RIGHT]:
|
|
self.loc[0] += 32
|
|
|
|
def up(self):
|
|
self.loc[1] -= 32
|
|
|
|
def down(self):
|
|
self.loc[1] += 32
|
|
|
|
def left(self):
|
|
self.loc[0] -= 32
|
|
|
|
def right(self):
|
|
self.loc[0] += 32
|
|
|
|
|
|
class Client:
|
|
def __init__(self, loc):
|
|
self.loc = loc
|
|
|
|
def render(self, surface):
|
|
surface.blit(clientImg, (self.loc[0], self.loc[1]))
|
|
|
|
|
|
def generate_client():
|
|
loc_for_client = []
|
|
for i in chairs:
|
|
for j in i:
|
|
loc_for_client.append(j.loc)
|
|
loc = (random.randint(0, len(loc_for_client)))
|
|
client_coordinates = (loc_for_client[loc])
|
|
return client_coordinates
|
|
|
|
|
|
class Table:
|
|
def __init__(self, loc, num):
|
|
self.loc = loc
|
|
self.number = num
|
|
self.num_of_chairs = np.random.randint(1, 5)
|
|
|
|
def render(self, surface):
|
|
surface.blit(tableImg, (self.loc[0], self.loc[1]))
|
|
|
|
def get_number(self):
|
|
return self.number
|
|
|
|
def get_number_of_chairs(self):
|
|
return self.num_of_chairs
|
|
|
|
|
|
def check_collision_with_table(x, y):
|
|
answer = False
|
|
for i in tables_coordinates:
|
|
if i[0] <= x <= i[0] + 32 and i[1] <= y <= i[1] + 32:
|
|
answer = True
|
|
else:
|
|
continue
|
|
return answer
|
|
|
|
|
|
class Chair:
|
|
def __init__(self, loc):
|
|
self.loc = loc
|
|
|
|
def render(self, surface):
|
|
surface.blit(chairImg, (self.loc[0], self.loc[1]))
|
|
|
|
class Mess:
|
|
def __init__(self, loc):
|
|
self.loc = loc
|
|
|
|
def render(self, surface):
|
|
surface.blit(messImg, (self.loc[0], self.loc[1]))
|
|
|
|
|
|
def pos_of_chair(table_cor, k):
|
|
pos = ((table_cor[0], table_cor[1] - 32),
|
|
(table_cor[0], table_cor[1] + 32),
|
|
(table_cor[0] - 32, table_cor[1]),
|
|
(table_cor[0] + 32, table_cor[1]))
|
|
return pos[k]
|
|
|
|
|
|
def check_collision_with_chair(x, y):
|
|
answer = False
|
|
for i in chairs:
|
|
for j in i:
|
|
if j.loc[0] <= x <= j.loc[0] + 32 and j.loc[1] <= y <= j.loc[1] + 32:
|
|
answer = True
|
|
else:
|
|
continue
|
|
return answer
|
|
|
|
|
|
class Food:
|
|
def __init__(self, name, pos_in_card, price, spiciness, vege, size, allergens, ingridients, drink_in):
|
|
self.name = name
|
|
self.pos_in_card = pos_in_card
|
|
self.price = price
|
|
self.spiciness = spiciness
|
|
self.vege = vege
|
|
self.size = size
|
|
self.allergens = allergens
|
|
self.ingridients = ingridients
|
|
self.drink_in = drink_in
|
|
|
|
def get_food(self):
|
|
return self.name, self.price
|
|
|
|
|
|
class Menu:
|
|
def __init__(self, card={}):
|
|
self.card = card
|
|
|
|
def get_menu(self):
|
|
return self.card
|
|
|
|
def add_to_card(self, dish):
|
|
self.card[str(len(self.card) + 1)] = dish
|
|
|
|
|
|
class Order(Table):
|
|
def __init__(self, status=False, table=0, dishes=[]):
|
|
self.table = table
|
|
self.dishes = dishes
|
|
self.status = status
|
|
|
|
def take_order(self, foods, table):
|
|
self.dishes.append(foods)
|
|
self.table = table.number
|
|
|
|
def deliver(self):
|
|
self.status = True
|
|
|
|
|
|
class Graph:
|
|
def __init__(self, num_of_nodes, directed=True):
|
|
self.m_num_of_nodes = num_of_nodes
|
|
self.m_nodes = range(self.m_num_of_nodes)
|
|
self.m_directed = directed
|
|
self.m_adj_list = {node: set() for node in self.m_nodes}
|
|
|
|
def add_edge(self, node1, node2, weight=1):
|
|
self.m_adj_list[node1].add((node2, weight))
|
|
if not self.m_directed:
|
|
self.m_adj_list[node2].add((node1, weight))
|
|
|
|
def print_adj_list(self):
|
|
for key in self.m_adj_list.keys():
|
|
print("node", key, ": ", self.m_adj_list[key])
|
|
|
|
def bfs(self, start_node, target_node):
|
|
visited = set()
|
|
queue = Queue()
|
|
queue.put(start_node)
|
|
visited.add(start_node)
|
|
parent = dict()
|
|
parent[start_node] = None
|
|
path_found = False
|
|
while not queue.empty():
|
|
current_node = queue.get()
|
|
if current_node == target_node:
|
|
path_found = True
|
|
break
|
|
for (next_node, weight) in self.m_adj_list[current_node]:
|
|
if next_node not in visited:
|
|
queue.put(next_node)
|
|
parent[next_node] = current_node
|
|
visited.add(next_node)
|
|
path = []
|
|
if path_found:
|
|
path.append(target_node)
|
|
while parent[target_node] is not None:
|
|
path.append(parent[target_node])
|
|
target_node = parent[target_node]
|
|
path.reverse()
|
|
return path
|
|
|
|
|
|
def pathFromTo(start, dest):
|
|
tab2 = [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]
|
|
tab4 = [41, 58]
|
|
tab3 = []
|
|
tab5 = []
|
|
for x in range(16):
|
|
for num in tab4:
|
|
tab5.append(num + x * 20)
|
|
for x in range(16):
|
|
for num in tab2:
|
|
tab3.append(num + x * 20)
|
|
graph = Graph(400, directed=False)
|
|
for x in tab5:
|
|
b = x + 1
|
|
c = x + 20
|
|
d = x - 20
|
|
graph.add_edge(x, b)
|
|
graph.add_edge(x, c)
|
|
graph.add_edge(x, d)
|
|
for x in tab3:
|
|
b = x + 1
|
|
c = x + 20
|
|
d = x - 1
|
|
e = x - 20
|
|
graph.add_edge(x, b)
|
|
graph.add_edge(x, c)
|
|
graph.add_edge(x, d)
|
|
graph.add_edge(x, e)
|
|
graph.add_edge(21, 22)
|
|
graph.add_edge(21, 41)
|
|
graph.add_edge(378, 358)
|
|
graph.add_edge(378, 377)
|
|
graph.add_edge(38, 37)
|
|
graph.add_edge(38, 58)
|
|
graph.add_edge(361, 362)
|
|
graph.add_edge(361, 341)
|
|
# graph.print_adj_list()
|
|
path = []
|
|
path = graph.bfs(start, dest)
|
|
return path
|
|
|
|
|
|
def numToX(num):
|
|
digits = [int(a) for a in str(num)]
|
|
if num >= 100:
|
|
if digits[1] % 2 == 0:
|
|
x = digits[2]
|
|
else:
|
|
x = digits[2] + 10
|
|
else:
|
|
if digits[0] % 2 == 0:
|
|
x = digits[1]
|
|
else:
|
|
x = digits[1] + 10
|
|
x = x * 32
|
|
return x
|
|
|
|
|
|
def numToY(num):
|
|
y = (math.floor(num / 20)) * 32
|
|
return y
|
|
|
|
|
|
def coordsToNum(coords):
|
|
num = ((coords[1] // 32) * 20) + (coords[0] // 32)
|
|
return int(num)
|
|
|
|
|
|
def waiterGo(dest):
|
|
print("Path: ", (pathFromTo(coordsToNum(waiter.loc), dest)))
|
|
go = []
|
|
for numb in range(len(pathFromTo(coordsToNum(waiter.loc), dest)) - 1):
|
|
go.append(pathFromTo(coordsToNum(waiter.loc), dest)[numb] - pathFromTo(coordsToNum(waiter.loc), dest)[numb + 1])
|
|
for x in range(len(go)):
|
|
if go[x] == -20:
|
|
waiter.down()
|
|
display.blit(waiterImgD, (waiter.loc[0], waiter.loc[1]))
|
|
# waiter.render(display)
|
|
pygame.display.update()
|
|
|
|
time.sleep(0.2)
|
|
elif go[x] == 20:
|
|
waiter.up()
|
|
display.blit(waiterImg, (waiter.loc[0], waiter.loc[1]))
|
|
# waiter.render(display)
|
|
pygame.display.update()
|
|
time.sleep(0.2)
|
|
elif go[x] == 1:
|
|
waiter.left()
|
|
display.blit(waiterImgL, (waiter.loc[0], waiter.loc[1]))
|
|
# waiter.render(display)
|
|
pygame.display.update()
|
|
time.sleep(0.2)
|
|
elif go[x] == -1:
|
|
waiter.right()
|
|
display.blit(waiterImgR, (waiter.loc[0], waiter.loc[1]))
|
|
# waiter.render(display)
|
|
pygame.display.update()
|
|
time.sleep(0.2)
|
|
|
|
|
|
def mouseToNum():
|
|
x = pygame.mouse.get_pos()[0]
|
|
y = pygame.mouse.get_pos()[1]
|
|
cordTab = [x, y]
|
|
squareNum = coordsToNum(cordTab)
|
|
return squareNum
|
|
|
|
|
|
class Map:
|
|
def __init__(self):
|
|
self.arr = np.zeros((20, 20))
|
|
self.arr[1:19, 1:19] = 1
|
|
|
|
def add_chair(self, loc):
|
|
self.arr[loc[0] // 32, loc[1] // 32] = 100
|
|
|
|
def add_mess(self, loc):
|
|
self.arr[loc[0] // 32, loc[1] // 32] = 100
|
|
|
|
def add_table(self, loc):
|
|
self.arr[loc[0] // 32, loc[1] // 32] = 200
|
|
|
|
def get_arr(self):
|
|
return self.arr.transpose()
|
|
|
|
|
|
class Tile():
|
|
def __init__(self, parent=None, loc=None):
|
|
self.parent = parent
|
|
self.position = loc
|
|
self.g = 0
|
|
self.h = 0
|
|
self.f = 0
|
|
|
|
def __eq__(self, other):
|
|
return self.position == other.position
|
|
|
|
|
|
def astar(map, start, end):
|
|
start_tile = Tile(None, start)
|
|
start_tile.g = start_tile.h = start_tile.f = 0
|
|
end_tile = Tile(None, end)
|
|
end_tile.g = end_tile.h = end_tile.f = 0
|
|
open_list = []
|
|
closed_list = []
|
|
open_list.append(start_tile)
|
|
|
|
while len(open_list) > 0:
|
|
current_tile = open_list[0]
|
|
current_index = 0
|
|
for index, item in enumerate(open_list):
|
|
if item.f <= current_tile.f:
|
|
current_tile = item
|
|
current_index = index
|
|
|
|
open_list.pop(current_index)
|
|
closed_list.append(current_tile)
|
|
if current_tile == end_tile:
|
|
path = []
|
|
current = current_tile
|
|
while current is not None:
|
|
path.append(current.position)
|
|
current = current.parent
|
|
return path[::-1]
|
|
children = []
|
|
|
|
for new_position in [(0, -1), (0, 1), (-1, 0), (1, 0)]:
|
|
tile_position = (current_tile.position[0] + new_position[0], current_tile.position[1] + new_position[1])
|
|
if map[tile_position[0]][tile_position[1]] == 0:
|
|
continue
|
|
new_node = Tile(current_tile, tile_position)
|
|
children.append(new_node)
|
|
|
|
for child in children:
|
|
skip = False
|
|
for closed_child in closed_list:
|
|
if child == closed_child:
|
|
skip = True
|
|
if skip is False:
|
|
child.g = current_tile.g + map[child.position[0]][child.position[1]]
|
|
child.h = np.absolute(child.position[0] - end_tile.position[0]) + np.absolute(
|
|
child.position[1] - end_tile.position[1])
|
|
child.f = child.g + child.h
|
|
for open_node in open_list:
|
|
if child == open_node and child.g > open_node.g:
|
|
continue
|
|
open_list.append(child)
|
|
|
|
|
|
def tell_preferences():
|
|
possibilities = [[30, 40, 50, None],
|
|
[True, False, None],
|
|
[True, False, None],
|
|
["high", "low", None],
|
|
["tomato", "olives", "feta", None],
|
|
["sausage", "pineapple", "mushrooms", "shrimps", "salami", None],
|
|
[True, False, None]]
|
|
choices = []
|
|
for i in possibilities:
|
|
choices.append(random.choice(i))
|
|
|
|
return choices
|
|
|
|
|
|
def evaluate_preferences(preferences):
|
|
data = []
|
|
if preferences[0] == 30:
|
|
data.append(30)
|
|
elif preferences[0] == 40:
|
|
data.append(40)
|
|
elif preferences[0] == 50:
|
|
data.append(50)
|
|
else:
|
|
data.append(random.choice([30, 40, 50]))
|
|
|
|
if preferences[1] is True:
|
|
data.append(1)
|
|
elif preferences[1] is False:
|
|
data.append(0)
|
|
else:
|
|
data.append(random.choice([1, 0]))
|
|
|
|
if preferences[2] is True:
|
|
data.append(1)
|
|
elif preferences[2] is False:
|
|
data.append(0)
|
|
else:
|
|
data.append(random.choice([1, 0]))
|
|
|
|
if preferences[3] == 'low':
|
|
data.append(30)
|
|
elif preferences[3] == 'high':
|
|
data.append(50)
|
|
else:
|
|
data.append(random.choice([30, 50]))
|
|
|
|
if preferences[4] == 'tomato':
|
|
data.append(1)
|
|
elif preferences[4] == 'olives':
|
|
data.append(3)
|
|
elif preferences[4] == 'feta':
|
|
data.append(2)
|
|
else:
|
|
data.append(0)
|
|
|
|
if preferences[5] == 'salami':
|
|
data.append(1)
|
|
elif preferences[5] == 'mushrooms':
|
|
data.append(2)
|
|
elif preferences[5] == 'pineapple':
|
|
data.append(3)
|
|
elif preferences[5] == 'shrimps':
|
|
data.append(4)
|
|
elif preferences[5] == 'sausage':
|
|
data.append(5)
|
|
else:
|
|
data.append(0)
|
|
|
|
if preferences[6] is True:
|
|
data.append(1)
|
|
elif preferences[6] is False:
|
|
data.append(0)
|
|
else:
|
|
data.append(random.choice([1, 0]))
|
|
|
|
return data
|
|
|
|
|
|
def choose_pizza(prefernce):
|
|
df = pd.read_excel("restaurant.xlsx")
|
|
|
|
d = {'low': 30, 'high': 50}
|
|
df['level of hunger'] = df['level of hunger'].map(d)
|
|
|
|
d = {'none': 0, 'tomato': 1, 'feta': 2, 'olives': 3}
|
|
df['allergy'] = df['allergy'].map(d)
|
|
|
|
d = {'none': 0, 'salami': 1, 'mushrooms': 2, 'pineapple': 3, 'shrimps': 4, 'sausage': 5}
|
|
df['favorite ingridient'] = df['favorite ingridient'].map(d)
|
|
|
|
d = {'margherita': 0, 'hawajska': 1, 'funghi': 2, 'light': 3, '4 sery': 4, 'pepperoni': 5,
|
|
'salami': 6, 'wegetarianska': 7, 'barbecue': 8, 'miesna': 9, 'paprykowa': 10,
|
|
'jalapeno': 11, 'barbecue wege': 12, 'kebab': 13, 'grecka': 14, 'piekielna': 15,
|
|
'drwala': 16, 'grzybowa': 17, 'staropolska': 18, 'goralska': 19, 'prosciutto': 20,
|
|
'broccoli': 21, 'americana': 22, 'farmerska': 23, 'nachos': 24, 'texas': 25,
|
|
'kurczak': 26, 'zielona': 27, 'mix': 28}
|
|
|
|
df['pizza'] = df['pizza'].map(d)
|
|
|
|
features = ['budget', 'spiciness', 'vege', 'level of hunger', 'allergy', 'favorite ingridient', 'drink in']
|
|
x = df[features]
|
|
y = df['pizza']
|
|
x_train, x_test, y_train, y_test = train_test_split(x, y)
|
|
|
|
clf = DecisionTreeClassifier(random_state=400)
|
|
clf = clf.fit(x_train, y_train)
|
|
ans = clf.predict([prefernce])
|
|
|
|
append_choice(ans, prefernce, d, df)
|
|
|
|
return ans
|
|
|
|
|
|
def append_df_to_excel(df, excel_path):
|
|
df_excel = pd.read_excel(excel_path)
|
|
result = pd.concat([df_excel, df], ignore_index=True)
|
|
result.to_excel(excel_path, index=False)
|
|
|
|
|
|
def append_choice(ans, pre, d, df):
|
|
new_row = pre
|
|
new_row.append(list(d.keys())[list(d.values()).index(int(ans))])
|
|
if new_row[3] == 30:
|
|
new_row[3] = 'low'
|
|
if new_row[3] == 50:
|
|
new_row[3] = 'high'
|
|
|
|
if new_row[4] == 0:
|
|
new_row[4] = 'none'
|
|
if new_row[4] == 1:
|
|
new_row[4] = 'tomato'
|
|
if new_row[4] == 2:
|
|
new_row[4] = 'feta'
|
|
if new_row[4] == 3:
|
|
new_row[4] = 'olives'
|
|
|
|
if new_row[5] == 0:
|
|
new_row[5] = 'none'
|
|
if new_row[5] == 1:
|
|
new_row[5] = 'salami'
|
|
if new_row[5] == 2:
|
|
new_row[5] = 'mushrooms'
|
|
if new_row[5] == 3:
|
|
new_row[5] = 'pineapple'
|
|
if new_row[5] == 4:
|
|
new_row[5] = 'shrimps'
|
|
if new_row[5] == 5:
|
|
new_row[5] = 'sausage'
|
|
|
|
data = {"budget": new_row[0], "spiciness": new_row[1], "vege": new_row[2], "level of hunger": new_row[3],
|
|
"allergy": new_row[4], "favorite ingridient": new_row[5], "drink in": 1, "pizza": new_row[7]}
|
|
|
|
n_df = pd.DataFrame(data, index=[len(df) + 1])
|
|
append_df_to_excel(n_df, "restaurant.xlsx")
|
|
|
|
|
|
def get_pizza(number):
|
|
with open("dishes.json") as f:
|
|
data = json.load(f)
|
|
for i in data:
|
|
if i["pos_in_card"] == int(number):
|
|
food = Food(i['name'], i['pos_in_card'], i['price'], i['spiciness'], i['vege'], i['size'], i['allergens'],
|
|
i['ingridients'], i['drink_in'])
|
|
return food
|
|
|
|
|
|
def display_img(surface, image):
|
|
surface.blit(image, (120, 120))
|
|
|
|
def display_sth(surface, image, coordX,coordY):
|
|
surface.blit(image, (coordX, coordY))
|
|
|
|
|
|
def create_training_data():
|
|
DATADIR = "Images"
|
|
CATEGORIES = ["yes", "no"]
|
|
IMG_SIZE = 90
|
|
training_data = []
|
|
for category in CATEGORIES:
|
|
path = os.path.join(DATADIR, category)
|
|
class_num = CATEGORIES.index(category) # 0 - pepperoni, 1 - no pepperoni
|
|
for img in tqdm(os.listdir(path)):
|
|
try:
|
|
img_array = cv2.imread(os.path.join(path, img), cv2.IMREAD_GRAYSCALE)
|
|
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
|
|
training_data.append([new_array, class_num])
|
|
except Exception as e:
|
|
pass
|
|
X = []
|
|
y = []
|
|
|
|
for features, label in training_data:
|
|
X.append(features)
|
|
y.append(label)
|
|
|
|
X = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
|
|
y = np.array(y)
|
|
|
|
print("Training data created!")
|
|
return X, y
|
|
|
|
|
|
def learn_neural_network(X, y):
|
|
X = X / 255.0
|
|
|
|
model = Sequential()
|
|
|
|
model.add(Conv2D(64, (3, 3), input_shape=X.shape[1:]))
|
|
model.add(Activation('relu'))
|
|
model.add(MaxPooling2D(pool_size=(2, 2)))
|
|
|
|
model.add(Conv2D(64, (3, 3)))
|
|
model.add(Activation('relu'))
|
|
model.add(MaxPooling2D(pool_size=(2, 2)))
|
|
|
|
model.add(Conv2D(64, (3, 3)))
|
|
model.add(Activation('relu'))
|
|
model.add(MaxPooling2D(pool_size=(2, 2)))
|
|
|
|
model.add(Flatten())
|
|
|
|
model.add(Dense(64))
|
|
|
|
model.add(Dense(1))
|
|
model.add(Activation('sigmoid'))
|
|
|
|
model.compile(loss='binary_crossentropy',
|
|
optimizer='adam',
|
|
metrics=['accuracy'])
|
|
|
|
model.fit(X, y, batch_size=32, epochs=10, validation_batch_size=0.1)
|
|
|
|
return model
|
|
|
|
def prepare_img(filepath):
|
|
IMG_SIZE = 90
|
|
img_array = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE)
|
|
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
|
|
return new_array.reshape(-1, IMG_SIZE, IMG_SIZE, 1) / 255
|
|
|
|
def predict(model,filepath):
|
|
return model.predict([prepare_img(filepath)])
|
|
|
|
|
|
def result(prediction):
|
|
if prediction[0][0] >= 0.5:
|
|
print(prediction)
|
|
print(math.ceil(prediction[0][0]))
|
|
print('No pepperoni')
|
|
elif prediction[0][0] < 0.5:
|
|
print(prediction)
|
|
print(math.floor(prediction[0][0]))
|
|
print("Pepperoni")
|
|
|
|
|
|
map = Map()
|
|
waiter = Waiter([32, 32])
|
|
|
|
tables = []
|
|
tables_coordinates = ((32 * 3, 32 * 2), (32 * 7, 32 * 2), (32 * 12, 32 * 2), (32 * 16, 32 * 2),
|
|
(32 * 3, 32 * 6), (32 * 7, 32 * 6), (32 * 12, 32 * 6), (32 * 16, 32 * 6),
|
|
(32 * 3, 32 * 13), (32 * 7, 32 * 13), (32 * 12, 32 * 13), (32 * 16, 32 * 13),
|
|
(32 * 3, 32 * 17), (32 * 7, 32 * 17), (32 * 12, 32 * 17), (32 * 16, 32 * 17))
|
|
|
|
chairs = []
|
|
for i in range(16):
|
|
tables.append(Table(tables_coordinates[i], i))
|
|
arr = []
|
|
for j in range(0, tables[i].get_number_of_chairs()):
|
|
arr.append(Chair(pos_of_chair(tables_coordinates[i], j)))
|
|
map.add_chair(Chair(pos_of_chair(tables_coordinates[i], j)).loc)
|
|
chairs.append(arr)
|
|
for table in tables:
|
|
map.add_table(table.loc)
|
|
|
|
client = Client(generate_client())
|
|
|
|
neural_prediction_in = False
|
|
|
|
restaurantIsClean = False
|
|
|
|
howManyMesses = random.randint(8, 12)
|
|
|
|
messesArray = [[0 for x in range(2)] for y in range(howManyMesses)]
|
|
for i in range(howManyMesses):
|
|
whereMessX = random.randint(1, 18)
|
|
whereMessY = random.randint(1, 18)
|
|
messesArray[i][0] = whereMessX
|
|
messesArray[i][1] = whereMessY
|
|
#messesArray = [[3, 14], [7, 17], [10, 9], [16, 10], [12, 18], [4, 11], [11, 14], [3, 5], [7, 18], [6, 13], [10, 8], [13, 16], [10, 6], [8, 6], [4, 10], [14, 6], [18, 1], [12, 17], [10, 11], [18, 3]]
|
|
#messesArray = [[9, 5], [16, 5], [5, 5], [10, 13], [3, 10], [8, 15], [13, 8], [14, 14], [12, 12], [3, 1]]
|
|
#messesArray = [[12, 8], [15, 9], [14, 9], [13, 6], [7, 7], [9, 7], [2, 15], [18, 16], [13, 15], [8, 18], [7, 14]]
|
|
#good example below
|
|
#messesArray = [[10, 12], [5, 17], [18, 3], [13, 2], [4, 5], [7, 4], [16, 5], [3, 2], [14, 17]]
|
|
#messesArray = [[12, 3], [11, 9], [13, 15], [3, 5], [2, 14], [17, 15], [1, 12], [14, 9], [7, 1], [7, 6]]
|
|
#this one below!
|
|
#messesArray = [[2, 15], [11, 9], [5, 11], [17, 1], [15, 7], [14, 10], [18, 8], [2, 9], [6, 4], [18, 10]]
|
|
#print(messesArray)
|
|
|
|
pygame.font.init()
|
|
default_font = pygame.font.get_default_font()
|
|
font_renderer = pygame.font.Font(default_font, 12)
|
|
|
|
def main(trashesList):
|
|
direction = []
|
|
first_time = True
|
|
number = 0
|
|
while True:
|
|
|
|
clock.tick(10)
|
|
keys = pygame.key.get_pressed()
|
|
|
|
for event in pygame.event.get():
|
|
if event.type == pygame.QUIT:
|
|
quit()
|
|
if keys[pygame.K_ESCAPE]:
|
|
quit()
|
|
|
|
for layer in gameMap.visible_layers:
|
|
for x, y, gid, in layer:
|
|
tile = gameMap.get_tile_image_by_gid(gid)
|
|
if tile is not None:
|
|
display.blit(tile, (x * gameMap.tilewidth, y * gameMap.tileheight))
|
|
|
|
key = pygame.key.get_pressed()
|
|
|
|
|
|
messesToDisplay = messesArray
|
|
for i in range (len(messesToDisplay)):
|
|
currentMessX = messesToDisplay[i][0]
|
|
currentMessY = messesToDisplay[i][1]
|
|
if i % 3 == 0:
|
|
display.blit(messImg, (currentMessX * 32, currentMessY * 32))
|
|
elif i % 3 == 1:
|
|
display.blit(messImg2, (currentMessX * 32, currentMessY * 32))
|
|
elif i % 3 == 2:
|
|
display.blit(messImg3, (currentMessX * 32, currentMessY * 32))
|
|
|
|
waiter.handle_events()
|
|
for table in tables:
|
|
table.render(display)
|
|
for chair_list in chairs:
|
|
for chair in chair_list:
|
|
chair.render(display)
|
|
|
|
left, middle, right = pygame.mouse.get_pressed()
|
|
|
|
if key[pygame.K_e]:
|
|
X, y = create_training_data()
|
|
model = learn_neural_network(X,y)
|
|
|
|
if middle:
|
|
waiterGo(mouseToNum())
|
|
elif right:
|
|
while True:
|
|
x = pygame.mouse.get_pos()[1]
|
|
y = pygame.mouse.get_pos()[0]
|
|
if y > 608 or y < 32 or x > 608 or x < 32 or check_collision_with_table(y,
|
|
x) or check_collision_with_chair(
|
|
y, x):
|
|
print("I can't go there")
|
|
break
|
|
goal = (x // 32, y // 32)
|
|
route = astar(map.get_arr(), (waiter.loc[1] // 32, waiter.loc[0] // 32), goal)
|
|
direction = [(x[1] - y[1], x[0] - y[0]) for x, y in zip(route[1:], route)]
|
|
break
|
|
elif left:
|
|
if client.loc[0] in [64, 128, 192, 256, 352, 416, 480, 544]:
|
|
while True:
|
|
x = client.loc[1] - 32
|
|
y = client.loc[0]
|
|
goal = (x // 32, y // 32)
|
|
route = astar(map.get_arr(), (waiter.loc[1] // 32, waiter.loc[0] // 32), goal)
|
|
direction = [(x[1] - y[1], x[0] - y[0]) for x, y in zip(route[1:], route)]
|
|
break
|
|
elif client.loc[0] in [96, 224, 384, 512]:
|
|
while True:
|
|
x = client.loc[1]
|
|
y = client.loc[0] - 32
|
|
goal = (x // 32, y // 32)
|
|
route = astar(map.get_arr(), (waiter.loc[1] // 32, waiter.loc[0] // 32), goal)
|
|
direction = [(x[1] - y[1], x[0] - y[0]) for x, y in zip(route[1:], route)]
|
|
break
|
|
print()
|
|
print("Hello Sir, tell me yours preferences")
|
|
print(
|
|
"Pass: 'budget', 'spiciness', 'vege', 'level_of_hunger', 'allergy', 'favorite_ingridient', 'drink_in'\n")
|
|
print("Here is my list of preferences")
|
|
ingridients = tell_preferences()
|
|
print(ingridients)
|
|
print()
|
|
pizza = get_pizza(choose_pizza(evaluate_preferences(ingridients)))
|
|
print("Our proposition:")
|
|
print(
|
|
"Name = {}\nprice = {}\nspiciness = {}\nvege = {}\nsize = {}\nallergens = {}\ningridients = {}\ndrink_in = {}\n"
|
|
.format(pizza.name, pizza.price, pizza.spiciness, pizza.vege, pizza.size, pizza.allergens,
|
|
pizza.ingridients, pizza.drink_in))
|
|
|
|
if len(direction) > 0:
|
|
d = direction.pop(0)
|
|
if d[0] == 1:
|
|
waiter.right()
|
|
elif d[0] == -1:
|
|
waiter.left()
|
|
elif d[1] == 1:
|
|
waiter.down()
|
|
elif d[1] == -1:
|
|
waiter.up()
|
|
|
|
key = pygame.key.get_pressed()
|
|
if key[pygame.K_p]:
|
|
pass
|
|
waiter.render(display)
|
|
client.render(display)
|
|
|
|
if waiter.loc == [576, 32]:
|
|
if first_time:
|
|
number = np.random.randint(20)
|
|
path = ('test/' + str(number) + '.jpg')
|
|
image = pygame.image.load(path)
|
|
first_time = False
|
|
display_img(display, image)
|
|
if neural_prediction_in is False:
|
|
prediction = predict(model, path)
|
|
result(prediction)
|
|
neural_prediction_in = True
|
|
|
|
else:
|
|
first_time = True
|
|
neural_prediction_in = False
|
|
|
|
|
|
font = pygame.font.SysFont('Arial', 18, bold=True)
|
|
trashesArray = trashesList
|
|
trashesLen = len(trashesArray)
|
|
#pygame.draw.line(display, (15, 0, 148), (32, 32), (numToX(trashesArray[0]), numToY(trashesArray[0])), 4)
|
|
for i in range(len(trashesArray)-1):
|
|
img = font.render(str(i), True,
|
|
pygame.Color(255, 255, 255),
|
|
pygame.Color(10, 148, 0))
|
|
pygame.draw.line(display, (10, 148, 0), (numToX(trashesArray[i]),numToY(trashesArray[i])), (numToX(trashesArray[i+1]),numToY(trashesArray[i+1])), 4)
|
|
display_sth(display, img, numToX(trashesArray[i]), numToY(trashesArray[i]))
|
|
|
|
img = font.render(str(trashesLen-1), True, pygame.Color(255, 255, 255), pygame.Color(10, 148, 0))
|
|
display_sth(display, img, numToX(trashesArray[trashesLen-1]), numToY(trashesArray[trashesLen-1]))
|
|
|
|
pygame.display.update()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|