from PIL import Image from torch.autograd import Variable from torch.optim import Adam from torch.utils.data import DataLoader from torchvision.transforms import transforms import glob import graph import os import pathlib import torch import torch.nn as nn import torchvision transformer1 = transforms.Compose([transforms.Resize((150, 150)), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) class ConvNet(nn.Module): def __init__(self, num_classes=6): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(num_features=12) self.relu1 = nn.ReLU() self.pool = nn.MaxPool2d(kernel_size=2) self.conv2 = nn.Conv2d(in_channels=12, out_channels=20, kernel_size=3, stride=1, padding=1) self.relu2 = nn.ReLU() self.conv3 = nn.Conv2d(in_channels=20, out_channels=32, kernel_size=3, stride=1, padding=1) self.bn3 = nn.BatchNorm2d(num_features=32) self.relu3 = nn.ReLU() self.fc = nn.Linear(in_features=75 * 75 * 32, out_features=num_classes) def forward(self, input): output = self.conv1(input) output = self.bn1(output) output = self.relu1(output) output = self.pool(output) output = self.conv2(output) output = self.relu2(output) output = self.conv3(output) output = self.bn3(output) output = self.relu3(output) output = output.view(-1, 32 * 75 * 75) output = self.fc(output) return output def create_neural_network(): #tworzenie sieci neuronowej device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') #użyj cuda jeśli możliwe transformer = transforms.Compose([transforms.Resize((150, 150)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) train_path = os.path.join('resources/neural_network/train/') #ścieżka do obrazków do treningu test_path = os.path.join('resources/neural_network/test/') #ścieżka do obrazków do testu train_loader = DataLoader(torchvision.datasets.ImageFolder(train_path, transform=transformer), batch_size=64, shuffle=True) test_loader = DataLoader(torchvision.datasets.ImageFolder(test_path, transform=transformer), batch_size=32, shuffle=True) root = pathlib.Path(train_path) classes = sorted([j.name.split('/')[-1] for j in root.iterdir()]) if os.path.exists("resources/neural_network/checkpoint.model"): #jeżeli istnieje model to wczytaj checkpoint = torch.load(os.path.join('resources/neural_network', 'checkpoint.model')) model = ConvNet(num_classes=6) model.load_state_dict(checkpoint) model.eval() else: #w przeciwnym razie utwórz nowy model model = ConvNet(num_classes=6).to(device) optimizer = Adam(model.parameters(), lr=0.001, weight_decay=0.0001) loss_function = nn.CrossEntropyLoss() num_epochs = 10 train_count = len(glob.glob(train_path + '/**/*.png')) #liczba obrazków treningowych test_count = len(glob.glob(test_path + '/**/*.png')) #liczba obrazków testowych best_accuracy = 0.0 for epoch in range(num_epochs): model.train() train_accuracy = 0.0 train_loss = 0.0 for i, (images, labels) in enumerate(train_loader): if torch.cuda.is_available(): images = Variable(images.cuda()) labels = Variable(labels.cuda()) optimizer.zero_grad() outputs = model(images) loss = loss_function(outputs, labels) loss.backward() optimizer.step() train_loss += loss.cpu().data * images.size(0) _, prediction = torch.max(outputs.data, 1) train_accuracy += int(torch.sum(prediction == labels.data)) train_accuracy = train_accuracy / train_count train_loss = train_loss / train_count model.eval() test_accuracy = 0.0 for i, (images, labels) in enumerate(test_loader): if torch.cuda.is_available(): images = Variable(images.cuda()) labels = Variable(labels.cuda()) outputs = model(images) _, prediction = torch.max(outputs.data, 1) test_accuracy += int(torch.sum(prediction == labels.data)) test_accuracy = test_accuracy / test_count print('Epoch: ' + str(epoch + 1) + ' Train Loss: ' + str(train_loss) + ' Train Accuracy: ' + str(train_accuracy) + ' Test Accuracy: ' + str(test_accuracy)) if test_accuracy > best_accuracy: torch.save(model.state_dict(), 'resources/neural_network/checkpoint.model') best_accuracy = test_accuracy checkpoint = torch.load(os.path.join('resources/neural_network', 'checkpoint.model')) model = ConvNet(num_classes=6) model.load_state_dict(checkpoint) model.eval() return classes, model def predfield(classes, istate, model): #zwraca najbliższe miejsce pola z wyrośniętą rośliną na podstawie wykrywania obrazu pred_path = os.path.join('resources/neural_network/sliced/') #ścieżka do obrazków do sprawdzenia pred_dict = {} images_path = glob.glob(pred_path + '/*.png') x = None #x'owa pola y = None #y'kowa pola min = None for i in images_path: #dodajemy pocięte obrazki do listy i ustawiamy im przewidywaną metkę pred_dict[i[i.rfind('/') + 1:]] = prediction1(classes, i, model, transformer1) for img_name, field in pred_dict.items(): if field != "random": #jeżeli metka nie jest 'random' to przypisz do x'a i y'a miejsce wyrośniętej rośliny if x is None and y is None: x = img_name[18] y = img_name[15] x = int(x) y = int(y) if x == 0: x = 9 else: x = x - 1 if y == 0: y = 9 else: y = y - 1 min = len((graph.graphsearch([], [], (x, y), istate, graph.succ))) print(min) else: temp_x = img_name[18] temp_y = img_name[15] temp_x = int(temp_x) temp_y = int(temp_y) if temp_x == 0: temp_x = 9 else: temp_x = temp_x - 1 if temp_y == 0: temp_y = 9 else: temp_y = temp_y - 1 if len((graph.graphsearch([], [], (temp_x, temp_y), istate, graph.succ))) < min: min = len((graph.graphsearch([], [], (temp_x, temp_y), istate, graph.succ))) x = temp_x y = temp_y if x == None and y == None: #jeżeli nie ma wyrośniętej rośliny to zwróć fałsz return False else: return x, y def prediction1(classes, img_path, model, transformer): #zwraca predykcję dla danego obrazka image = Image.open(img_path).convert('RGB') image_tensor = transformer(image).float() image_tensor = image_tensor.unsqueeze_(0) if torch.cuda.is_available(): image_tensor.cuda() input = Variable(image_tensor) output = model(input) index = output.data.numpy().argmax() pred = classes[index] return pred