import astar import cart import definitions import graph import image_slicer import map import neuralnetwork import os import plant import pygame import station import treelearn pygame.display.set_caption("Smart Cart") def main(): #tworzenie podstawowych obiektów map1 = map.Map([]) map1.create_base_map() move_list = ["rotate_left", "move", "move", "move", "move", "move", "move", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "move", "move", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "move", "move", "move", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "move", "move", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "move"] #początkowe ruchy amount_of_seeds_dict = {"beetroot": definitions.CART_AMOUNT_OF_SEEDS_EACH_TYPE, "carrot": definitions.CART_AMOUNT_OF_SEEDS_EACH_TYPE, "potato": definitions.CART_AMOUNT_OF_SEEDS_EACH_TYPE, "wheat": definitions.CART_AMOUNT_OF_SEEDS_EACH_TYPE} collected_plants_dict = {"beetroot": 0, "carrot": 0, "potato": 0, "wheat": 0} fertilizer_dict = {"beetroot": definitions.CART_FERTILIZER, "carrot": definitions.CART_FERTILIZER, "potato": definitions.CART_FERTILIZER, "wheat": definitions.CART_FERTILIZER} station1 = station.Station(collected_plants_dict) cart1 = cart.Cart(amount_of_seeds_dict, collected_plants_dict, definitions.CART_DIRECTION_WEST, fertilizer_dict, definitions.CART_FUEL, definitions.CART_WATER_LEVEL, 0 * definitions.BLOCK_SIZE, 0 * definitions.BLOCK_SIZE) cart1_rect = pygame.Rect(cart1.get_x(), cart1.get_y(), definitions.BLOCK_SIZE, definitions.BLOCK_SIZE) clock = pygame.time.Clock() tree = treelearn.treelearn() #tworzenie drzewa decyzyjnego decision = [0] #początkowa decyzja o braku powrotu do stacji (0) classes, model = neuralnetwork.create_neural_network() #uczenie sieci neuronowej grow_flower_dandelion = False random_movement = False run = True while run: #pętla główna programu clock.tick(definitions.FPS) for event in pygame.event.get(): if event.type == pygame.QUIT: run = False map1.draw_window(cart1, cart1_rect) if not move_list: #jeżeli są jakieś ruchy do wykonania w move_list grow_flower_dandelion = True pygame.image.save(pygame.display.get_surface(), os.path.join('resources/neural_network/tiles/', 'screen.jpg')) #zrzut obecnego ekranu tiles = image_slicer.slice(os.path.join('resources/neural_network/tiles/', 'screen.jpg'), 100, save=False) #pocięcie ekranu na sto części image_slicer.save_tiles(tiles, directory=os.path.join('resources/neural_network/tiles/'), prefix='tile', format='png') #zapisanie części do folderu tiles os.remove('resources/neural_network/tiles/screen.jpg') istate = graph.Istate(cart1.get_direction(), cart1.get_x() / definitions.BLOCK_SIZE, cart1.get_y() / definitions.BLOCK_SIZE) #stan początkowy wózka (jego orientacja oraz jego aktualne miejsce) if neuralnetwork.predfield(classes, istate, model) is not False: #jeżeli istnieje jakaś dojrzała roślina random_movement = False if decision == [0]: #jeżeli decyzja jest 0 (brak powrotu do stacji) to uprawiaj pole move_list = (astar.graphsearch([], astar.f, [], neuralnetwork.predfield(classes, istate, model), istate, map1, graph.succ)) #lista z ruchami, które należy po kolei wykonać, astar else: #jeżeli decyzja jest 1 (powrót do stacji) to wróć do stacji uzupełnić zapasy move_list = (graph.graphsearch([], [], (0, 0), istate, graph.succ)) #lista z ruchami, które należy po kolei wykonać, graphsearch else: random_movement = True elif move_list: #jeżeli move_list nie jest pusta cart1.handle_movement(cart1_rect, move_list.pop(0)) #wykonaj kolejny ruch oraz zdejmij ten ruch z początku listy if random_movement is True: cart1.handle_movement_random(cart1_rect) #wykonuj losowe ruchy cart1.do_work(cart1_rect, map1, station1) #wykonaj pracę na danym polu decision = treelearn.make_decision(cart1.get_all_amount_of_seeds(), cart1.get_all_collected_plants(), cart1.get_all_fertilizer(), cart1.get_fuel(), tree, cart1.get_water_level()) #podejmij decyzję czy wracać do stacji (0 : NIE, 1 : TAK) if grow_flower_dandelion is True: plant.Plant.grow_flower_dandelion(map1) #losuj urośnięcie kwiatka dandeliona plant.Plant.grow_plants(map1) #zwiększ poziom dojrzałości roślin pygame.quit() if __name__ == "__main__": main()