DecisionTree save and load from file

This commit is contained in:
Łukasz 2021-05-31 21:05:42 +02:00
parent b3197dccd2
commit 01dae9185b
5 changed files with 10 additions and 4 deletions

View File

@ -4,6 +4,7 @@ import pydotplus
from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import matplotlib.image as pltimg import matplotlib.image as pltimg
import joblib
df = pandas.read_csv("treedata\\data.csv") df = pandas.read_csv("treedata\\data.csv")
@ -38,12 +39,14 @@ y = df['Decision']
dtree = DecisionTreeClassifier() dtree = DecisionTreeClassifier()
dtree = dtree.fit(X, y) dtree = dtree.fit(X, y)
joblib.dump(dtree, 'treedata\\DecisionTree.pkl')
data = tree.export_graphviz(dtree, out_file=None, feature_names=features) data = tree.export_graphviz(dtree, out_file=None, feature_names=features)
graph = pydotplus.graph_from_dot_data(data) graph = pydotplus.graph_from_dot_data(data)
graph.write_png('mydecisiontree.png') graph.write_png('treedata\\mydecisiontree.png')
img = pltimg.imread('mydecisiontree.png') img = pltimg.imread('treedata\\mydecisiontree.png')
imgplot = plt.imshow(img) imgplot = plt.imshow(img)
plt.show() plt.show()

View File

@ -7,11 +7,11 @@ import WeatherConditions
import convertToPrediction import convertToPrediction
import drawUI import drawUI
import Graphsearch as graph import Graphsearch as graph
from decisiontree import dtree
from Tractor import Tractor from Tractor import Tractor
from TractorLoad import TillageUnit from TractorLoad import TillageUnit
from constants import * from constants import *
from manualSteering import manualSteeringDriver from manualSteering import manualSteeringDriver
import joblib
pygame.init() pygame.init()
@ -58,6 +58,9 @@ while working:
weather, day_time, temperature, wind, humidy = WeatherConditions.checkConditions() weather, day_time, temperature, wind, humidy = WeatherConditions.checkConditions()
question = [convertToPrediction.convert(field.state, weather, day_time, temperature, wind, humidy)] question = [convertToPrediction.convert(field.state, weather, day_time, temperature, wind, humidy)]
dtree = joblib.load('treedata\\DecisionTree.pkl')
decision = dtree.predict(question) decision = dtree.predict(question)
if tractor.autodrive: if tractor.autodrive:

BIN
treedata/DecisionTree.pkl Normal file

Binary file not shown.

View File

Before

Width:  |  Height:  |  Size: 122 KiB

After

Width:  |  Height:  |  Size: 122 KiB