decision tree update

This commit is contained in:
Łukasz 2021-05-19 15:04:10 +02:00
parent 3b44694641
commit e10fbe4e48
6 changed files with 237 additions and 978 deletions

View File

@ -25,9 +25,9 @@ class Field:
elif self.state == 'toFertilize': elif self.state == 'toFertilize':
return 3 return 3
elif self.state == 'toWater': elif self.state == 'toWater':
return 200 return 4
elif self.state == 'toCut': elif self.state == 'toCut':
return 99 return 100
else: else:
return 0 return 0

View File

@ -1,221 +1,122 @@
from itertools import product from itertools import product
import numpy as np
import pandas as pd
import csv import csv
import id3test
import pprint # stan pola: toCut, toPlow, toWater, toSeed, toFertilize
import sys # pora dnia: dzień, noc
import pandas # pogoda: sunny, cloudy, rainy, hail
from sklearn import tree # temperatura: freezing, cold, mild, hot
import pydotplus # wiatr: windless, strong wind, gale
from sklearn.tree import DecisionTreeClassifier # humidy: low, high
import matplotlib.pyplot as plt
import matplotlib.image as pltimg
field_states = ['toPlow', 'toWater', 'toSeed', 'toFertilize', 'toCut'] field_states = ['toPlow', 'toWater', 'toSeed', 'toFertilize', 'toCut']
header = ['Equipped', 'Not Equipped'] day_time = ['Day', 'Night']
hitch = ['Tillage Unit', 'Crop Trailer'] weather = ['Clear Sky', 'Cloudy', 'Rainy', 'Hail']
tillage_unit = ['Seeds', 'Water', 'Fertilizer', 'Nothing'] temperature = ['Freezing', 'Cold', 'Mild', 'Hot']
engine_working = ['Yes', 'No'] wind = ['Windless', 'Strong Wind', 'Gale']
in_base = ['Yes', 'No'] humidy = ['Low', 'High']
fuel = ['Enough', 'Not_Enough']
# output = list(product(field_states, header, hitch, tillage_unit, engine_working, in_base, fuel)) output = list(product(field_states, day_time, weather, temperature, wind, humidy))
output = list(product(field_states, header, hitch, tillage_unit, in_base))
dict = [] dict = []
# for x in range(len(output)):
# # dict.append({'field': output[x][0], 'header' : output[x][1], 'hitch' : output[x][2],
# # 'tillage_unit' : output[x][3], 'engine_working' : output[x][4],
# # 'in_base' : output[x][5], 'fuel': output[x][6]})
# print(x+1, output[x])
decisions = []
curr_decision = "Make Action"
for x in range(len(output)): for x in range(len(output)):
aField = output[x][0] if x % 3 == 0:
aHeader = output[x][1]
aHitch = output[x][2]
aTillage_unit = output[x][3]
aIn_base = output[x][4]
while True: while True:
curr_decision = "Make Action" mField = output[x][0]
mDay_time = output[x][1]
mWeather = output[x][2]
mTemperature = output[x][3]
mWind = output[x][4]
mHumidy = output[x][5]
mDecision = 'null'
if aField == 'toCut': # pora dnia: dzień 2, noc -2
if not aHeader == 'Equipped': # pogoda: sunny+3, cloudy+3, rainy-2, hail-5
if aIn_base == 'Yes': # temperatura: freezing -3, cold-1, mild+4, hot+2
curr_decision = 'Change Header' # wiatr: windless +2, strong wind-1, gale-3
# humidy: low+2, high-3
if mDay_time == 'Day':
valDay_time = 2
else:
valDay_time = -3
if mWeather == 'Clear Sky' or 'Cloudy':
valWeather = 3
elif mWeather == 'Rainy':
valWeather = -2
else:
valWeather = -5
if mTemperature == 'Freezing':
valTemperature = -3
elif mTemperature == 'Cold':
valTemperature = -1
elif mTemperature == 'Mild':
valTemperature = 4
else:
valTemperature = 2
if mWind == 'Windless':
valWind = +2
elif mWind == 'Strong Wind':
valWind = -1
else:
valWind = -3
if humidy == 'Low':
valHumidy = 2
else:
valHumidy = -2
result = valDay_time + valWeather + valTemperature + valWind + valHumidy
if result >= 0:
mDecision = "Make Action"
else:
mDecision = "Wait"
#Special conditions
if mDay_time == 'Night' and (mField == 'toWater' or mField == 'toCut'):
mDecision = "Make Action"
break break
else: else:
curr_decision = 'Go To Base' mDecision = "Wait"
if mWeather == 'Rainy' and (mField == 'toPlow' or mField == 'toSeed'):
mDecision = "Make Action"
break
else:
mDecision = 'Wait'
if mWeather == 'Hail':
mDecision = 'Wait'
break break
if not aHitch == 'Crop Trailer': if mTemperature == 'Freezing':
if aIn_base == 'Yes': mDecision = 'Wait'
curr_decision = 'Change Hitch'
break
else:
curr_decision = 'Go To Base'
break break
if aField == 'toPlow': if mWind == 'Gale':
if aHeader == 'Equipped': mDecision = 'Wait'
if aIn_base == "Yes":
curr_decision = 'Change Header'
break
else:
curr_decision = 'Go To Base'
break break
if not aHitch == "Tillage Unit": if mHumidy == 'High' and mField == 'toCut':
if aIn_base == "Yes": mDecision = "Wait"
curr_decision = "Change Hitch"
break break
else: else:
curr_decision = "Go To Base" mDecision = "Make Action"
break
if not aTillage_unit == "Nothing":
if aIn_base == "Yes":
curr_decision = "Change Load"
break
else:
curr_decision = "Go To Base"
break break
if aField == 'toSeed': dict.append({'Field': mField, 'Day Time': mDay_time, 'Weather': mWeather,
if aHeader == 'Equipped': 'Temperature': mTemperature, 'Wind': mWind, 'Humidy': mHumidy, 'Decision': mDecision})
if aIn_base == "Yes":
curr_decision = 'Change Header'
break
else:
curr_decision = 'Go To Base'
break
if not aHitch == "Tillage Unit": fields = ['Field', 'Day Time', 'Weather', 'Temperature', 'Wind', 'Humidy', 'Decision']
if aIn_base == "Yes":
curr_decision = "Change Hitch"
break
else:
curr_decision = "Go To Base"
break
if not aTillage_unit == "Seeds":
if aIn_base == "Yes":
curr_decision = "Change Load"
break
else:
curr_decision = "Go To Base"
break
if aField == 'toWater': filename = "treedata\\data.csv"
if aHeader == 'Equipped':
if aIn_base == "Yes":
curr_decision = 'Change Header'
break
else:
curr_decision = 'Go To Base'
break
if not aHitch == "Tillage Unit":
if aIn_base == "Yes":
curr_decision = "Change Hitch"
break
else:
curr_decision = "Go To Base"
break
if not aTillage_unit == "Water":
if aIn_base == "Yes":
curr_decision = "Change Load"
break
else:
curr_decision = "Go To Base"
break
if aField == 'toFertilize':
if aHeader == 'Equipped':
if aIn_base == "Yes":
curr_decision = 'Change Header'
break
else:
curr_decision = 'Go To Base'
break
if not aHitch == "Tillage Unit":
if aIn_base == "Yes":
curr_decision = "Change Hitch"
break
else:
curr_decision = "Go To Base"
break
if not aTillage_unit == "Fertilizer":
if aIn_base == "Yes":
curr_decision = "Change Load"
break
else:
curr_decision = "Go To Base"
break
if aIn_base == 'Yes':
curr_decision = 'Go To Field'
break
dict.append({'Field': aField, 'Header': aHeader, 'Hitch': aHitch, 'Tillage_Unit': aTillage_unit,
'In_Base': aIn_base, 'Decision': curr_decision})
print(dict)
fields = ['Field', 'Header', 'Hitch', 'Tillage_Unit', 'In_Base', 'Decision']
filename = "treedata\\data2.csv"
with open(filename, 'w') as csvfile: with open(filename, 'w') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fields) writer = csv.DictWriter(csvfile, fieldnames=fields)
writer.writeheader() writer.writeheader()
writer.writerows(dict) writer.writerows(dict)
df = pandas.read_csv("treedata\\data2.csv")
print(df)
# Map text values to number values
d = {'toPlow': 0, 'toWater': 1, 'toSeed': 2, 'toFertilize': 3, 'toCut': 4}
df['Field'] = df['Field'].map(d)
d = {'Not Equipped': 0, 'Equipped': 1}
df['Header'] = df['Header'].map(d)
d = {'Tillage Unit': 0, 'Crop Trailer': 1}
df['Hitch'] = df['Hitch'].map(d)
d = {'Nothing': 0, 'Seeds': 1, 'Water': 2, 'Fertilizer': 3}
df['Tillage_Unit'] = df['Tillage_Unit'].map(d)
d = {'No': 0, 'Yes': 1}
df['In_Base'] = df['In_Base'].map(d)
d = {'Make Action': 0, 'Change Header': 1, 'Go To Base': 2, 'Change Hitch': 3, 'Change Load': 4, 'Go To Field': 5}
df['Decision'] = df['Decision'].map(d)
# Separate the feature columns from targert columns
features = ['Field', 'Header', 'Hitch', 'Tillage_Unit', 'In_Base']
X = df[features]
y = df['Decision']
# FIELD 'toPlow' : 0, 'toWater' : 1, 'toSeed' : 2, 'toFertilize' : 3, 'toCut' : 4
# HEADER 'Not Equipped' : 0, 'Equipped' : 1
# HITCH 'Tillage Unit' : 0, 'Crop Trailer' : 1
# TILLAGE 'Nothing' : 0, 'Seeds' : 1, 'Water': 2, 'Fertilizer': 3
# IN BASE 'No' : 0, 'Yes' : 1
dtree = DecisionTreeClassifier()
dtree = dtree.fit(X, y)
data = tree.export_graphviz(dtree, out_file=None, feature_names=features)
graph = pydotplus.graph_from_dot_data(data)
graph.write_png('mydecisiontree.png')
img = pltimg.imread('mydecisiontree.png')
imgplot = plt.imshow(img)
plt.show()
print(dtree.predict([[0, 1, 1, 3, 0]]))

View File

@ -1,7 +1,7 @@
import random import random
def checkConditions(): def checkConditions():
weather = random.choice(['Sunny', 'Cloudy', 'Rainy', 'Hail']) weather = random.choice(['Clear Sky', 'Cloudy', 'Rainy', 'Hail'])
day_time = random.choice(['Day', 'Night']) day_time = random.choice(['Day', 'Night'])
temperature = random.choice(['Freezing', 'Cold', 'Mild', 'Hot']) temperature = random.choice(['Freezing', 'Cold', 'Mild', 'Hot'])
wind = random.choice(['Windless', 'Strong Wind', 'Gale']) wind = random.choice(['Windless', 'Strong Wind', 'Gale'])

View File

@ -29,7 +29,6 @@ df['Humidy'] = df['Humidy'].map(d)
d = {'Wait' : 0, 'Make Action' : 1} d = {'Wait' : 0, 'Make Action' : 1}
df['Decision'] = df['Decision'].map(d) df['Decision'] = df['Decision'].map(d)
#Separate the feature columns from targert columns #Separate the feature columns from targert columns
features = ['Field', 'Day Time', 'Weather', 'Temperature', 'Wind', 'Humidy'] features = ['Field', 'Day Time', 'Weather', 'Temperature', 'Wind', 'Humidy']
@ -37,7 +36,6 @@ features = ['Field', 'Day Time', 'Weather', 'Temperature', 'Wind', 'Humidy']
X = df[features] X = df[features]
y = df['Decision'] y = df['Decision']
dtree = DecisionTreeClassifier() dtree = DecisionTreeClassifier()
dtree = dtree.fit(X, y) dtree = dtree.fit(X, y)

BIN
mydecisiontree.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 122 KiB

File diff suppressed because it is too large Load Diff