from itertools import product import numpy as np import pandas as pd import csv import id3test import pprint import sys import pandas from sklearn import tree import pydotplus from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt import matplotlib.image as pltimg # stan pola: toCut, toPlow, toWater, toSeed, toFertilize # pora dnia: dzień, noc # pogoda: sunny, cloudy, rainy, hail # temperatura: freezing, cold, mild, hot # wiatr: windless, strong wind, gale # humidy: low, high field_states = ['toPlow', 'toWater', 'toSeed', 'toFertilize', 'toCut'] day_time = ['Day', 'Night'] weather = ['Clear Sky', 'Cloudy', 'Rainy', 'Hail'] temperature = ['Freezing', 'Cold', 'Mild', 'Hot'] wind = ['Windless', 'Strong Wind', 'Gale'] humidy = ['Low', 'High'] output = list(product(field_states, day_time, weather, temperature, wind, humidy)) dict = [] for x in range(len(output)): while True: mField = output[x][0] mDay_time = output[x][1] mWeather = output[x][2] mTemperature = output[x][3] mWind = output[x][4] mHumidy = output[x][5] mDecision = 'null' # pora dnia: dzień 2, noc -2 # pogoda: sunny+3, cloudy+3, rainy-2, hail-5 # temperatura: freezing -3, cold-1, mild+4, hot+2 # wiatr: windless +2, strong wind-1, gale-3 # humidy: low+2, high-3 if mDay_time == 'Day': valDay_time = 2 else: valDay_time = -3 if mWeather == 'Sunny' or 'Cloudy': valWeather = 3 elif mWeather == 'Rainy': valWeather = -2 else: valWeather = -5 if mTemperature == 'Freezing': valTemperature = -3 elif mTemperature == 'Cold': valTemperature = -1 elif mTemperature == 'Mild': valTemperature = 4 else: valTemperature = 2 if mWind == 'Windless': valWind = +2 elif mWind == 'Strong Wind': valWind = -1 else: valWind = -3 if humidy == 'Low': valHumidy = 2 else: valHumidy = -2 result = valDay_time + valWeather + valTemperature + valWind + valHumidy if result >= 0: mDecision = "Make Action" else: mDecision = "Wait" break dict.append({'Field': mField, 'Day Time': mDay_time, 'Weather': mWeather, 'Temperature': mTemperature, 'Wind': mWind, 'Humidy': mHumidy, 'Decision': mDecision}) fields = ['Field', 'Day Time', 'Weather', 'Temperature', 'Wind', 'Humidy', 'Decision'] filename = "treedata\\data3.csv" with open(filename, 'w') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=fields) writer.writeheader() writer.writerows(dict)