564 lines
20 KiB
C
564 lines
20 KiB
C
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions
|
||
|
// are met:
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer in the
|
||
|
// documentation and/or other materials provided with the distribution.
|
||
|
// * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived
|
||
|
// from this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved.
|
||
|
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
|
||
|
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
|
||
|
|
||
|
|
||
|
#ifndef PX_COOKING_H
|
||
|
#define PX_COOKING_H
|
||
|
/** \addtogroup cooking
|
||
|
@{
|
||
|
*/
|
||
|
#include "common/PxPhysXCommonConfig.h"
|
||
|
#include "common/PxTolerancesScale.h"
|
||
|
#include "cooking/Pxc.h"
|
||
|
|
||
|
#include "cooking/PxConvexMeshDesc.h"
|
||
|
#include "cooking/PxTriangleMeshDesc.h"
|
||
|
#include "cooking/PxMidphaseDesc.h"
|
||
|
#include "cooking/PxBVHStructureDesc.h"
|
||
|
#include "geometry/PxTriangleMesh.h"
|
||
|
#include "geometry/PxBVHStructure.h"
|
||
|
|
||
|
#if !PX_DOXYGEN
|
||
|
namespace physx
|
||
|
{
|
||
|
#endif
|
||
|
|
||
|
class PxPhysicsInsertionCallback;
|
||
|
class PxFoundation;
|
||
|
|
||
|
/**
|
||
|
\brief Result from convex cooking.
|
||
|
*/
|
||
|
struct PxConvexMeshCookingResult
|
||
|
{
|
||
|
enum Enum
|
||
|
{
|
||
|
/**
|
||
|
\brief Convex mesh cooking succeeded.
|
||
|
*/
|
||
|
eSUCCESS,
|
||
|
|
||
|
/**
|
||
|
\brief Convex mesh cooking failed, algorithm couldn't find 4 initial vertices without a small triangle.
|
||
|
|
||
|
@see PxCookingParams::areaTestEpsilon PxConvexFlag::eCHECK_ZERO_AREA_TRIANGLES
|
||
|
*/
|
||
|
eZERO_AREA_TEST_FAILED,
|
||
|
|
||
|
/**
|
||
|
\brief Convex mesh cooking succeeded, but the algorithm has reached the 255 polygons limit.
|
||
|
The produced hull does not contain all input vertices. Try to simplify the input vertices
|
||
|
or try to use the eINFLATE_CONVEX or the eQUANTIZE_INPUT flags.
|
||
|
|
||
|
@see PxConvexFlag::eINFLATE_CONVEX PxConvexFlag::eQUANTIZE_INPUT
|
||
|
*/
|
||
|
ePOLYGONS_LIMIT_REACHED,
|
||
|
|
||
|
/**
|
||
|
\brief Something unrecoverable happened. Check the error stream to find out what.
|
||
|
*/
|
||
|
eFAILURE
|
||
|
};
|
||
|
};
|
||
|
|
||
|
/** \brief Enumeration for convex mesh cooking algorithms. */
|
||
|
struct PxConvexMeshCookingType
|
||
|
{
|
||
|
enum Enum
|
||
|
{
|
||
|
/**
|
||
|
\brief The Quickhull algorithm constructs the hull from the given input points. The resulting hull
|
||
|
will only contain a subset of the input points.
|
||
|
|
||
|
*/
|
||
|
eQUICKHULL
|
||
|
};
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
\brief Result from triangle mesh cooking
|
||
|
*/
|
||
|
struct PxTriangleMeshCookingResult
|
||
|
{
|
||
|
enum Enum
|
||
|
{
|
||
|
/**
|
||
|
\brief Everything is A-OK.
|
||
|
*/
|
||
|
eSUCCESS = 0,
|
||
|
|
||
|
/**
|
||
|
\brief a triangle is too large for well-conditioned results. Tessellate the mesh for better behavior, see the user guide section on cooking for more details.
|
||
|
*/
|
||
|
eLARGE_TRIANGLE,
|
||
|
|
||
|
/**
|
||
|
\brief Something unrecoverable happened. Check the error stream to find out what.
|
||
|
*/
|
||
|
eFAILURE
|
||
|
};
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
|
||
|
\brief Enum for the set of mesh pre-processing parameters.
|
||
|
|
||
|
*/
|
||
|
|
||
|
struct PxMeshPreprocessingFlag
|
||
|
{
|
||
|
enum Enum
|
||
|
{
|
||
|
/**
|
||
|
\brief When set, mesh welding is performed. See PxCookingParams::meshWeldTolerance. Clean mesh must be enabled.
|
||
|
*/
|
||
|
eWELD_VERTICES = 1 << 0,
|
||
|
|
||
|
/**
|
||
|
\brief When set, mesh cleaning is disabled. This makes cooking faster.
|
||
|
|
||
|
When clean mesh is not performed, mesh welding is also not performed.
|
||
|
|
||
|
It is recommended to use only meshes that passed during validateTriangleMesh.
|
||
|
|
||
|
*/
|
||
|
eDISABLE_CLEAN_MESH = 1 << 1,
|
||
|
|
||
|
/**
|
||
|
\brief When set, active edges are set for each triangle edge. This makes cooking faster but slow up contact generation.
|
||
|
*/
|
||
|
eDISABLE_ACTIVE_EDGES_PRECOMPUTE = 1 << 2,
|
||
|
|
||
|
/**
|
||
|
\brief When set, 32-bit indices will always be created regardless of triangle count.
|
||
|
|
||
|
\note By default mesh will be created with 16-bit indices for triangle count <= 0xFFFF and 32-bit otherwise.
|
||
|
*/
|
||
|
eFORCE_32BIT_INDICES = 1 << 3
|
||
|
};
|
||
|
};
|
||
|
|
||
|
typedef PxFlags<PxMeshPreprocessingFlag::Enum,PxU32> PxMeshPreprocessingFlags;
|
||
|
|
||
|
/**
|
||
|
|
||
|
\brief Structure describing parameters affecting mesh cooking.
|
||
|
|
||
|
@see PxSetCookingParams() PxGetCookingParams()
|
||
|
*/
|
||
|
struct PxCookingParams
|
||
|
{
|
||
|
/**
|
||
|
\brief Zero-size area epsilon used in convex hull computation.
|
||
|
|
||
|
If the area of a triangle of the hull is below this value, the triangle will be rejected. This test
|
||
|
is done only if PxConvexFlag::eCHECK_ZERO_AREA_TRIANGLES is used.
|
||
|
|
||
|
@see PxConvexFlag::eCHECK_ZERO_AREA_TRIANGLES
|
||
|
|
||
|
<b>Default value:</b> 0.06f*PxTolerancesScale.length*PxTolerancesScale.length
|
||
|
|
||
|
<b>Range:</b> (0.0f, PX_MAX_F32)
|
||
|
*/
|
||
|
float areaTestEpsilon;
|
||
|
|
||
|
/**
|
||
|
\brief Plane tolerance used in convex hull computation.
|
||
|
|
||
|
The value is used during hull construction. When a new point is about to be added to the hull it
|
||
|
gets dropped when the point is closer to the hull than the planeTolerance. The planeTolerance
|
||
|
is increased according to the hull size.
|
||
|
|
||
|
If 0.0f is set all points are accepted when the convex hull is created. This may lead to edge cases
|
||
|
where the new points may be merged into an existing polygon and the polygons plane equation might
|
||
|
slightly change therefore. This might lead to failures during polygon merging phase in the hull computation.
|
||
|
|
||
|
It is recommended to use the default value, however if it is required that all points needs to be
|
||
|
accepted or huge thin convexes are created, it might be required to lower the default value.
|
||
|
|
||
|
\note The plane tolerance is used only within PxConvexMeshCookingType::eQUICKHULL algorithm.
|
||
|
|
||
|
<b>Default value:</b> 0.0007f
|
||
|
|
||
|
<b>Range:</b> <0.0f, PX_MAX_F32)
|
||
|
*/
|
||
|
float planeTolerance;
|
||
|
|
||
|
/**
|
||
|
\brief Convex hull creation algorithm.
|
||
|
|
||
|
<b>Default value:</b> PxConvexMeshCookingType::eQUICKHULL
|
||
|
|
||
|
@see PxConvexMeshCookingType
|
||
|
*/
|
||
|
PxConvexMeshCookingType::Enum convexMeshCookingType;
|
||
|
|
||
|
/**
|
||
|
\brief When true, the face remap table is not created. This saves a significant amount of memory, but the SDK will
|
||
|
not be able to provide the remap information for internal mesh triangles returned by collisions,
|
||
|
sweeps or raycasts hits.
|
||
|
|
||
|
<b>Default value:</b> false
|
||
|
*/
|
||
|
bool suppressTriangleMeshRemapTable;
|
||
|
|
||
|
/**
|
||
|
\brief When true, the triangle adjacency information is created. You can get the adjacency triangles
|
||
|
for a given triangle from getTriangle.
|
||
|
|
||
|
<b>Default value:</b> false
|
||
|
*/
|
||
|
bool buildTriangleAdjacencies;
|
||
|
|
||
|
/**
|
||
|
\brief When true, addigional information required for GPU-accelerated rigid body simulation is created. This can increase memory usage and cooking times for convex meshes and triangle meshes.
|
||
|
|
||
|
<b>Default value:</b> false
|
||
|
*/
|
||
|
bool buildGPUData;
|
||
|
|
||
|
/**
|
||
|
\brief Tolerance scale is used to check if cooked triangles are not too huge. This check will help with simulation stability.
|
||
|
|
||
|
\note The PxTolerancesScale values have to match the values used when creating a PxPhysics or PxScene instance.
|
||
|
|
||
|
@see PxTolerancesScale
|
||
|
*/
|
||
|
PxTolerancesScale scale;
|
||
|
|
||
|
/**
|
||
|
\brief Mesh pre-processing parameters. Used to control options like whether the mesh cooking performs vertex welding before cooking.
|
||
|
|
||
|
<b>Default value:</b> 0
|
||
|
*/
|
||
|
PxMeshPreprocessingFlags meshPreprocessParams;
|
||
|
|
||
|
/**
|
||
|
\brief Mesh weld tolerance. If mesh welding is enabled, this controls the distance at which vertices are welded.
|
||
|
If mesh welding is not enabled, this value defines the acceptance distance for mesh validation. Provided no two vertices are within this distance, the mesh is considered to be
|
||
|
clean. If not, a warning will be emitted. Having a clean, welded mesh is required to achieve the best possible performance.
|
||
|
|
||
|
The default vertex welding uses a snap-to-grid approach. This approach effectively truncates each vertex to integer values using meshWeldTolerance.
|
||
|
Once these snapped vertices are produced, all vertices that snap to a given vertex on the grid are remapped to reference a single vertex. Following this,
|
||
|
all triangles' indices are remapped to reference this subset of clean vertices. It should be noted that the vertices that we do not alter the
|
||
|
position of the vertices; the snap-to-grid is only performed to identify nearby vertices.
|
||
|
|
||
|
The mesh validation approach also uses the same snap-to-grid approach to identify nearby vertices. If more than one vertex snaps to a given grid coordinate,
|
||
|
we ensure that the distance between the vertices is at least meshWeldTolerance. If this is not the case, a warning is emitted.
|
||
|
|
||
|
<b>Default value:</b> 0.0
|
||
|
*/
|
||
|
PxReal meshWeldTolerance;
|
||
|
|
||
|
/**
|
||
|
\brief Controls the desired midphase desc structure for triangle meshes.
|
||
|
|
||
|
@see PxBVH33MidphaseDesc, PxBVH34MidphaseDesc, PxMidphaseDesc
|
||
|
|
||
|
<b>Default value:</b> PxMeshMidPhase::eBVH33
|
||
|
*/
|
||
|
PxMidphaseDesc midphaseDesc;
|
||
|
|
||
|
/**
|
||
|
\brief Vertex limit beyond which additional acceleration structures are computed for each convex mesh. Increase that limit to reduce memory usage.
|
||
|
Computing the extra structures all the time does not guarantee optimal performance. There is a per-platform break-even point below which the
|
||
|
extra structures actually hurt performance.
|
||
|
|
||
|
<b>Default value:</b> 32
|
||
|
*/
|
||
|
PxU32 gaussMapLimit;
|
||
|
|
||
|
PxCookingParams(const PxTolerancesScale& sc):
|
||
|
areaTestEpsilon (0.06f*sc.length*sc.length),
|
||
|
planeTolerance (0.0007f),
|
||
|
convexMeshCookingType (PxConvexMeshCookingType::eQUICKHULL),
|
||
|
suppressTriangleMeshRemapTable (false),
|
||
|
buildTriangleAdjacencies (false),
|
||
|
buildGPUData (false),
|
||
|
scale (sc),
|
||
|
meshPreprocessParams (0),
|
||
|
meshWeldTolerance (0.f),
|
||
|
gaussMapLimit (32)
|
||
|
{
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class PxCooking
|
||
|
{
|
||
|
public:
|
||
|
/**
|
||
|
\brief Closes this instance of the interface.
|
||
|
|
||
|
This function should be called to cleanly shut down the Cooking library before application exit.
|
||
|
|
||
|
\note This function is required to be called to release foundation usage.
|
||
|
|
||
|
*/
|
||
|
virtual void release() = 0;
|
||
|
|
||
|
/**
|
||
|
\brief Sets cooking parameters
|
||
|
|
||
|
\param[in] params Cooking parameters
|
||
|
|
||
|
@see getParams()
|
||
|
*/
|
||
|
virtual void setParams(const PxCookingParams& params) = 0;
|
||
|
|
||
|
/**
|
||
|
\brief Gets cooking parameters
|
||
|
|
||
|
\return Current cooking parameters.
|
||
|
|
||
|
@see PxCookingParams setParams()
|
||
|
*/
|
||
|
virtual const PxCookingParams& getParams() const = 0;
|
||
|
|
||
|
/**
|
||
|
\brief Checks endianness is the same between cooking & target platforms
|
||
|
|
||
|
\return True if there is and endian mismatch.
|
||
|
*/
|
||
|
virtual bool platformMismatch() const = 0;
|
||
|
|
||
|
/**
|
||
|
\brief Cooks a triangle mesh. The results are written to the stream.
|
||
|
|
||
|
To create a triangle mesh object it is necessary to first 'cook' the mesh data into
|
||
|
a form which allows the SDK to perform efficient collision detection.
|
||
|
|
||
|
cookTriangleMesh() allows a mesh description to be cooked into a binary stream
|
||
|
suitable for loading and performing collision detection at runtime.
|
||
|
|
||
|
\param[in] desc The triangle mesh descriptor to read the mesh from.
|
||
|
\param[in] stream User stream to output the cooked data.
|
||
|
\param[out] condition Result from triangle mesh cooking.
|
||
|
\return true on success
|
||
|
|
||
|
@see cookConvexMesh() setParams() PxPhysics.createTriangleMesh() PxTriangleMeshCookingResult::Enum
|
||
|
*/
|
||
|
virtual bool cookTriangleMesh(const PxTriangleMeshDesc& desc, PxOutputStream& stream, PxTriangleMeshCookingResult::Enum* condition = NULL) const = 0;
|
||
|
|
||
|
|
||
|
/**
|
||
|
\brief Cooks and creates a triangle mesh and inserts it into PxPhysics.
|
||
|
|
||
|
\note PxPhysicsInsertionCallback can be obtained through PxPhysics::getPhysicsInsertionCallback().
|
||
|
|
||
|
\param[in] desc The triangle mesh descriptor to read the mesh from.
|
||
|
\param[in] insertionCallback The insertion interface from PxPhysics.
|
||
|
\param[out] condition Result from triangle mesh cooking.
|
||
|
\return PxTriangleMesh pointer on success.
|
||
|
|
||
|
@see cookTriangleMesh() setParams() PxPhysics.createTriangleMesh() PxPhysicsInsertionCallback
|
||
|
*/
|
||
|
virtual PxTriangleMesh* createTriangleMesh(const PxTriangleMeshDesc& desc, PxPhysicsInsertionCallback& insertionCallback, PxTriangleMeshCookingResult::Enum* condition = NULL) const = 0;
|
||
|
|
||
|
/**
|
||
|
\brief Verifies if the triangle mesh is valid. Prints an error message for each inconsistency found.
|
||
|
|
||
|
The following conditions are true for a valid triangle mesh:
|
||
|
1. There are no duplicate vertices (within specified vertexWeldTolerance. See PxCookingParams::meshWeldTolerance)
|
||
|
2. There are no large triangles (within specified PxTolerancesScale.)
|
||
|
|
||
|
\param[in] desc The triangle mesh descriptor to read the mesh from.
|
||
|
|
||
|
\return true if all the validity conditions hold, false otherwise.
|
||
|
|
||
|
@see cookTriangleMesh()
|
||
|
*/
|
||
|
virtual bool validateTriangleMesh(const PxTriangleMeshDesc& desc) const = 0;
|
||
|
|
||
|
|
||
|
/**
|
||
|
\brief Cooks a convex mesh. The results are written to the stream.
|
||
|
|
||
|
To create a triangle mesh object it is necessary to first 'cook' the mesh data into
|
||
|
a form which allows the SDK to perform efficient collision detection.
|
||
|
|
||
|
cookConvexMesh() allows a mesh description to be cooked into a binary stream
|
||
|
suitable for loading and performing collision detection at runtime.
|
||
|
|
||
|
\note The number of vertices and the number of convex polygons in a cooked convex mesh is limited to 255.
|
||
|
\note If those limits are exceeded in either the user-provided data or the final cooked mesh, an error is reported.
|
||
|
|
||
|
\param[in] desc The convex mesh descriptor to read the mesh from.
|
||
|
\param[in] stream User stream to output the cooked data.
|
||
|
\param[out] condition Result from convex mesh cooking.
|
||
|
\return true on success.
|
||
|
|
||
|
@see cookTriangleMesh() setParams() PxConvexMeshCookingResult::Enum
|
||
|
*/
|
||
|
virtual bool cookConvexMesh(const PxConvexMeshDesc& desc, PxOutputStream& stream, PxConvexMeshCookingResult::Enum* condition = NULL) const = 0;
|
||
|
|
||
|
/**
|
||
|
\brief Cooks and creates a convex mesh and inserts it into PxPhysics.
|
||
|
|
||
|
\note This method does the same as cookConvexMesh, but the produced convex mesh is not stored
|
||
|
into a stream but is directly inserted in PxPhysics. Use this method if you are unable to cook offline.
|
||
|
|
||
|
\note PxPhysicsInsertionCallback can be obtained through PxPhysics::getPhysicsInsertionCallback().
|
||
|
|
||
|
\param[in] desc The convex mesh descriptor to read the mesh from.
|
||
|
\param[in] insertionCallback The insertion interface from PxPhysics.
|
||
|
\param[out] condition Result from convex mesh cooking.
|
||
|
\return PxConvexMesh pointer on success
|
||
|
|
||
|
@see cookConvexMesh() setParams() PxPhysicsInsertionCallback
|
||
|
*/
|
||
|
virtual PxConvexMesh* createConvexMesh(const PxConvexMeshDesc& desc, PxPhysicsInsertionCallback& insertionCallback, PxConvexMeshCookingResult::Enum* condition = NULL) const = 0;
|
||
|
|
||
|
/**
|
||
|
\brief Verifies if the convex mesh is valid. Prints an error message for each inconsistency found.
|
||
|
|
||
|
The convex mesh descriptor must contain an already created convex mesh - the vertices, indices and polygons must be provided.
|
||
|
|
||
|
\note This function should be used if PxConvexFlag::eDISABLE_MESH_VALIDATION is planned to be used in release builds.
|
||
|
|
||
|
\param[in] desc The convex mesh descriptor to read the mesh from.
|
||
|
|
||
|
\return true if all the validity conditions hold, false otherwise.
|
||
|
|
||
|
@see cookConvexMesh()
|
||
|
*/
|
||
|
virtual bool validateConvexMesh(const PxConvexMeshDesc& desc) const = 0;
|
||
|
|
||
|
|
||
|
/**
|
||
|
\brief Computed hull polygons from given vertices and triangles. Polygons are needed for PxConvexMeshDesc rather than triangles.
|
||
|
|
||
|
Please note that the resulting polygons may have different number of vertices. Some vertices may be removed.
|
||
|
The output vertices, indices and polygons must be used to construct a hull.
|
||
|
|
||
|
The provided PxAllocatorCallback does allocate the out array's. It is the user responsibility to deallocated those
|
||
|
array's.
|
||
|
|
||
|
\param[in] mesh Simple triangle mesh containing vertices and triangles used to compute polygons.
|
||
|
\param[in] inCallback Memory allocator for out array allocations.
|
||
|
\param[out] nbVerts Number of vertices used by polygons.
|
||
|
\param[out] vertices Vertices array used by polygons.
|
||
|
\param[out] nbIndices Number of indices used by polygons.
|
||
|
\param[out] indices Indices array used by polygons.
|
||
|
\param[out] nbPolygons Number of created polygons.
|
||
|
\param[out] hullPolygons Polygons array.
|
||
|
\return true on success
|
||
|
|
||
|
@see cookConvexMesh() PxConvexFlags PxConvexMeshDesc PxSimpleTriangleMesh
|
||
|
*/
|
||
|
virtual bool computeHullPolygons(const PxSimpleTriangleMesh& mesh, PxAllocatorCallback& inCallback, PxU32& nbVerts, PxVec3*& vertices,
|
||
|
PxU32& nbIndices, PxU32*& indices, PxU32& nbPolygons, PxHullPolygon*& hullPolygons) const = 0;
|
||
|
|
||
|
/**
|
||
|
\brief Cooks a heightfield. The results are written to the stream.
|
||
|
|
||
|
To create a heightfield object there is an option to precompute some of calculations done while loading the heightfield data.
|
||
|
|
||
|
cookHeightField() allows a heightfield description to be cooked into a binary stream
|
||
|
suitable for loading and performing collision detection at runtime.
|
||
|
|
||
|
\param[in] desc The heightfield descriptor to read the HF from.
|
||
|
\param[in] stream User stream to output the cooked data.
|
||
|
\return true on success
|
||
|
|
||
|
@see PxPhysics.createHeightField()
|
||
|
*/
|
||
|
virtual bool cookHeightField(const PxHeightFieldDesc& desc, PxOutputStream& stream) const = 0;
|
||
|
|
||
|
/**
|
||
|
\brief Cooks and creates a heightfield mesh and inserts it into PxPhysics.
|
||
|
|
||
|
\param[in] desc The heightfield descriptor to read the HF from.
|
||
|
\param[in] insertionCallback The insertion interface from PxPhysics.
|
||
|
\return PxHeightField pointer on success
|
||
|
|
||
|
@see cookConvexMesh() setParams() PxPhysics.createTriangleMesh() PxPhysicsInsertionCallback
|
||
|
*/
|
||
|
virtual PxHeightField* createHeightField(const PxHeightFieldDesc& desc, PxPhysicsInsertionCallback& insertionCallback) const = 0;
|
||
|
|
||
|
/**
|
||
|
\brief Cooks a bounding volume hierarchy structure. The results are written to the stream.
|
||
|
|
||
|
cookBVHStructure() allows a BVH structure description to be cooked into a binary stream
|
||
|
suitable for loading and performing BVH detection at runtime.
|
||
|
|
||
|
\param[in] desc The BVH structure descriptor.
|
||
|
\param[in] stream User stream to output the cooked data.
|
||
|
\return true on success.
|
||
|
|
||
|
@see PxBVHStructure PxRigidActorExt::getRigidActorShapeLocalBoundsList
|
||
|
*/
|
||
|
virtual bool cookBVHStructure(const PxBVHStructureDesc& desc, PxOutputStream& stream) const = 0;
|
||
|
|
||
|
/**
|
||
|
\brief Cooks and creates a bounding volume hierarchy structure and inserts it into PxPhysics.
|
||
|
|
||
|
\note This method does the same as cookBVHStructure, but the produced BVH structure is not stored
|
||
|
into a stream but is directly inserted in PxPhysics. Use this method if you are unable to cook offline.
|
||
|
|
||
|
\note PxPhysicsInsertionCallback can be obtained through PxPhysics::getPhysicsInsertionCallback().
|
||
|
|
||
|
\param[in] desc The BVH structure descriptor.
|
||
|
\param[in] insertionCallback The insertion interface from PxPhysics.
|
||
|
\return PxBVHStructure pointer on success
|
||
|
|
||
|
@see cookBVHStructure() PxPhysicsInsertionCallback
|
||
|
*/
|
||
|
virtual PxBVHStructure* createBVHStructure(const PxBVHStructureDesc& desc, PxPhysicsInsertionCallback& insertionCallback) const = 0;
|
||
|
protected:
|
||
|
virtual ~PxCooking(){}
|
||
|
};
|
||
|
|
||
|
#if !PX_DOXYGEN
|
||
|
} // namespace physx
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
\brief Create an instance of the cooking interface.
|
||
|
|
||
|
Note that the foundation object is handled as an application-wide singleton in statically linked executables
|
||
|
and a DLL-wide singleton in dynamically linked executables. Therefore, if you are using the runtime SDK in the
|
||
|
same executable as cooking, you should pass the Physics's copy of foundation (acquired with
|
||
|
PxPhysics::getFoundation()) to the cooker. This will also ensure correct handling of memory for objects
|
||
|
passed from the cooker to the SDK.
|
||
|
|
||
|
To use cooking in standalone mode, create an instance of the Foundation object with PxCreateCookingFoundation.
|
||
|
You should pass the same foundation object to all instances of the cooking interface.
|
||
|
|
||
|
\param[in] version the SDK version number
|
||
|
\param[in] foundation the foundation object associated with this instance of the cooking interface.
|
||
|
\param[in] params the parameters for this instance of the cooking interface
|
||
|
\return true on success.
|
||
|
*/
|
||
|
PX_C_EXPORT PX_PHYSX_COOKING_API physx::PxCooking* PX_CALL_CONV PxCreateCooking(physx::PxU32 version,
|
||
|
physx::PxFoundation& foundation,
|
||
|
const physx::PxCookingParams& params);
|
||
|
|
||
|
/** @} */
|
||
|
#endif
|