299 lines
7.9 KiB
C++
299 lines
7.9 KiB
C++
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions
|
|
// are met:
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
// * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved.
|
|
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
|
|
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
|
|
|
|
#ifndef PSFOUNDATION_PSPOOL_H
|
|
#define PSFOUNDATION_PSPOOL_H
|
|
|
|
#include "PsArray.h"
|
|
#include "PsSort.h"
|
|
#include "PsBasicTemplates.h"
|
|
#include "PsInlineArray.h"
|
|
|
|
namespace physx
|
|
{
|
|
namespace shdfnd
|
|
{
|
|
|
|
/*!
|
|
Simple allocation pool
|
|
*/
|
|
template <class T, class Alloc = typename AllocatorTraits<T>::Type>
|
|
class PoolBase : public UserAllocated, public Alloc
|
|
{
|
|
PX_NOCOPY(PoolBase)
|
|
protected:
|
|
PoolBase(const Alloc& alloc, uint32_t elementsPerSlab, uint32_t slabSize)
|
|
: Alloc(alloc), mSlabs(alloc), mElementsPerSlab(elementsPerSlab), mUsed(0), mSlabSize(slabSize), mFreeElement(0)
|
|
{
|
|
PX_COMPILE_TIME_ASSERT(sizeof(T) >= sizeof(size_t));
|
|
}
|
|
|
|
public:
|
|
~PoolBase()
|
|
{
|
|
if(mUsed)
|
|
disposeElements();
|
|
|
|
for(void** slabIt = mSlabs.begin(), *slabEnd = mSlabs.end(); slabIt != slabEnd; ++slabIt)
|
|
Alloc::deallocate(*slabIt);
|
|
}
|
|
|
|
// Allocate space for single object
|
|
PX_INLINE T* allocate()
|
|
{
|
|
if(mFreeElement == 0)
|
|
allocateSlab();
|
|
T* p = reinterpret_cast<T*>(mFreeElement);
|
|
mFreeElement = mFreeElement->mNext;
|
|
mUsed++;
|
|
/**
|
|
Mark a specified amount of memory with 0xcd pattern. This is used to check that the meta data
|
|
definition for serialized classes is complete in checked builds.
|
|
*/
|
|
#if PX_CHECKED
|
|
for(uint32_t i = 0; i < sizeof(T); ++i)
|
|
reinterpret_cast<uint8_t*>(p)[i] = 0xcd;
|
|
#endif
|
|
return p;
|
|
}
|
|
|
|
// Put space for a single element back in the lists
|
|
PX_INLINE void deallocate(T* p)
|
|
{
|
|
if(p)
|
|
{
|
|
PX_ASSERT(mUsed);
|
|
mUsed--;
|
|
push(reinterpret_cast<FreeList*>(p));
|
|
}
|
|
}
|
|
|
|
PX_INLINE T* construct()
|
|
{
|
|
T* t = allocate();
|
|
return t ? new (t) T() : 0;
|
|
}
|
|
|
|
template <class A1>
|
|
PX_INLINE T* construct(A1& a)
|
|
{
|
|
T* t = allocate();
|
|
return t ? new (t) T(a) : 0;
|
|
}
|
|
|
|
template <class A1, class A2>
|
|
PX_INLINE T* construct(A1& a, A2& b)
|
|
{
|
|
T* t = allocate();
|
|
return t ? new (t) T(a, b) : 0;
|
|
}
|
|
|
|
template <class A1, class A2, class A3>
|
|
PX_INLINE T* construct(A1& a, A2& b, A3& c)
|
|
{
|
|
T* t = allocate();
|
|
return t ? new (t) T(a, b, c) : 0;
|
|
}
|
|
|
|
template <class A1, class A2, class A3>
|
|
PX_INLINE T* construct(A1* a, A2& b, A3& c)
|
|
{
|
|
T* t = allocate();
|
|
return t ? new (t) T(a, b, c) : 0;
|
|
}
|
|
|
|
template <class A1, class A2, class A3, class A4>
|
|
PX_INLINE T* construct(A1& a, A2& b, A3& c, A4& d)
|
|
{
|
|
T* t = allocate();
|
|
return t ? new (t) T(a, b, c, d) : 0;
|
|
}
|
|
|
|
template <class A1, class A2, class A3, class A4, class A5>
|
|
PX_INLINE T* construct(A1& a, A2& b, A3& c, A4& d, A5& e)
|
|
{
|
|
T* t = allocate();
|
|
return t ? new (t) T(a, b, c, d, e) : 0;
|
|
}
|
|
|
|
PX_INLINE void destroy(T* const p)
|
|
{
|
|
if(p)
|
|
{
|
|
p->~T();
|
|
deallocate(p);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
struct FreeList
|
|
{
|
|
FreeList* mNext;
|
|
};
|
|
|
|
// All the allocated slabs, sorted by pointer
|
|
InlineArray<void*, 64, Alloc> mSlabs;
|
|
|
|
uint32_t mElementsPerSlab;
|
|
uint32_t mUsed;
|
|
uint32_t mSlabSize;
|
|
|
|
FreeList* mFreeElement; // Head of free-list
|
|
|
|
// Helper function to get bitmap of allocated elements
|
|
|
|
void push(FreeList* p)
|
|
{
|
|
p->mNext = mFreeElement;
|
|
mFreeElement = p;
|
|
}
|
|
|
|
// Allocate a slab and segregate it into the freelist
|
|
void allocateSlab()
|
|
{
|
|
T* slab = reinterpret_cast<T*>(Alloc::allocate(mSlabSize, __FILE__, __LINE__));
|
|
|
|
mSlabs.pushBack(slab);
|
|
|
|
// Build a chain of nodes for the freelist
|
|
T* it = slab + mElementsPerSlab;
|
|
while(--it >= slab)
|
|
push(reinterpret_cast<FreeList*>(it));
|
|
}
|
|
|
|
/*
|
|
Cleanup method. Go through all active slabs and call destructor for live objects,
|
|
then free their memory
|
|
*/
|
|
void disposeElements()
|
|
{
|
|
Array<void*, Alloc> freeNodes(*this);
|
|
while(mFreeElement)
|
|
{
|
|
freeNodes.pushBack(mFreeElement);
|
|
mFreeElement = mFreeElement->mNext;
|
|
}
|
|
Alloc& alloc(*this);
|
|
sort(freeNodes.begin(), freeNodes.size(), Less<void*>(), alloc);
|
|
sort(mSlabs.begin(), mSlabs.size(), Less<void*>(), alloc);
|
|
|
|
typename Array<void*, Alloc>::Iterator slabIt = mSlabs.begin(), slabEnd = mSlabs.end();
|
|
for(typename Array<void*, Alloc>::Iterator freeIt = freeNodes.begin(); slabIt != slabEnd; ++slabIt)
|
|
{
|
|
for(T* tIt = reinterpret_cast<T*>(*slabIt), *tEnd = tIt + mElementsPerSlab; tIt != tEnd; ++tIt)
|
|
{
|
|
if(freeIt != freeNodes.end() && *freeIt == tIt)
|
|
++freeIt;
|
|
else
|
|
tIt->~T();
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Go through all slabs and call destructor if the slab is empty
|
|
*/
|
|
void releaseEmptySlabs()
|
|
{
|
|
Array<void*, Alloc> freeNodes(*this);
|
|
Array<void*, Alloc> slabNodes(mSlabs, *this);
|
|
while(mFreeElement)
|
|
{
|
|
freeNodes.pushBack(mFreeElement);
|
|
mFreeElement = mFreeElement->mNext;
|
|
}
|
|
|
|
typename Array<void*, Alloc>::Iterator freeIt = freeNodes.begin(), freeEnd = freeNodes.end(),
|
|
lastCheck = freeNodes.end() - mElementsPerSlab;
|
|
|
|
if(freeNodes.size() > mElementsPerSlab)
|
|
{
|
|
Alloc& alloc(*this);
|
|
sort(freeNodes.begin(), freeNodes.size(), Less<void*>(), alloc);
|
|
sort(slabNodes.begin(), slabNodes.size(), Less<void*>(), alloc);
|
|
|
|
mSlabs.clear();
|
|
for(void** slabIt = slabNodes.begin(), *slabEnd = slabNodes.end(); slabIt != slabEnd; ++slabIt)
|
|
{
|
|
while((freeIt < lastCheck) && (*slabIt > (*freeIt)))
|
|
{
|
|
push(reinterpret_cast<FreeList*>(*freeIt));
|
|
freeIt++;
|
|
}
|
|
|
|
if(*slabIt == (*freeIt)) // the slab's first element in freeList
|
|
{
|
|
const size_t endSlabAddress = size_t(*slabIt) + mSlabSize;
|
|
const size_t endFreeAddress = size_t(*(freeIt + mElementsPerSlab - 1));
|
|
if(endFreeAddress + sizeof(T) == endSlabAddress)
|
|
{ // all slab's element in freeList
|
|
Alloc::deallocate(*slabIt);
|
|
freeIt += mElementsPerSlab;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
mSlabs.pushBack(*slabIt);
|
|
}
|
|
}
|
|
|
|
while(freeIt != freeEnd)
|
|
{
|
|
push(reinterpret_cast<FreeList*>(*freeIt));
|
|
++freeIt;
|
|
}
|
|
}
|
|
};
|
|
|
|
// original pool implementation
|
|
template <class T, class Alloc = typename AllocatorTraits<T>::Type>
|
|
class Pool : public PoolBase<T, Alloc>
|
|
{
|
|
public:
|
|
Pool(const Alloc& alloc = Alloc(), uint32_t elementsPerSlab = 32)
|
|
: PoolBase<T, Alloc>(alloc, elementsPerSlab, elementsPerSlab * sizeof(T))
|
|
{
|
|
}
|
|
};
|
|
|
|
// allows specification of the slab size instead of the occupancy
|
|
template <class T, uint32_t slabSize, class Alloc = typename AllocatorTraits<T>::Type>
|
|
class Pool2 : public PoolBase<T, Alloc>
|
|
{
|
|
public:
|
|
Pool2(const Alloc& alloc = Alloc()) : PoolBase<T, Alloc>(alloc, slabSize / sizeof(T), slabSize)
|
|
{
|
|
}
|
|
};
|
|
|
|
} // namespace shdfnd
|
|
} // namespace physx
|
|
|
|
#endif // #ifndef PSFOUNDATION_PSPOOL_H
|