GRK/cw 3/dependencies/glm/gtx/simd_vec4.hpp
secret_dude a7bd7ecb75 master
2022-01-12 16:07:16 +01:00

547 lines
16 KiB
C++

/// @ref gtx_simd_vec4
/// @file glm/gtx/simd_vec4.hpp
///
/// @see core (dependence)
///
/// @defgroup gtx_simd_vec4 GLM_GTX_simd_vec4
/// @ingroup gtx
///
/// @brief SIMD implementation of vec4 type.
///
/// <glm/gtx/simd_vec4.hpp> need to be included to use these functionalities.
#pragma once
// Dependency:
#include "../glm.hpp"
#if(GLM_ARCH != GLM_ARCH_PURE)
#if(GLM_ARCH & GLM_ARCH_SSE2_BIT)
# include "../detail/intrinsic_common.hpp"
# include "../detail/intrinsic_geometric.hpp"
# include "../detail/intrinsic_integer.hpp"
#else
# error "GLM: GLM_GTX_simd_vec4 requires compiler support of SSE2 through intrinsics"
#endif
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTX_simd_vec4 extension included")
# pragma message("GLM: GLM_GTX_simd_vec4 extension is deprecated and will be removed in GLM 0.9.9. Use *vec4 types instead and use compiler SIMD arguments.")
#endif
// Warning silencer for nameless struct/union.
#if (GLM_COMPILER & GLM_COMPILER_VC)
# pragma warning(push)
# pragma warning(disable:4201) // warning C4201: nonstandard extension used : nameless struct/union
#endif
namespace glm
{
enum comp
{
X = 0,
R = 0,
S = 0,
Y = 1,
G = 1,
T = 1,
Z = 2,
B = 2,
P = 2,
W = 3,
A = 3,
Q = 3
};
}//namespace glm
namespace glm{
namespace detail
{
/// 4-dimensional vector implemented using SIMD SEE intrinsics.
/// \ingroup gtx_simd_vec4
GLM_ALIGNED_STRUCT(16) fvec4SIMD
{
typedef float value_type;
typedef std::size_t size_type;
typedef fvec4SIMD type;
typedef tvec4<float, defaultp> pure_type;
typedef tvec4<bool, highp> bool_type;
#ifdef GLM_SIMD_ENABLE_XYZW_UNION
union
{
__m128 Data;
struct {float x, y, z, w;};
};
#else
__m128 Data;
#endif
//////////////////////////////////////
// Implicit basic constructors
fvec4SIMD() GLM_DEFAULT_CTOR;
fvec4SIMD(fvec4SIMD const & v) GLM_DEFAULT;
fvec4SIMD(__m128 const & Data);
//////////////////////////////////////
// Explicit basic constructors
explicit fvec4SIMD(
ctor);
explicit fvec4SIMD(
float const & s);
explicit fvec4SIMD(
float const & x,
float const & y,
float const & z,
float const & w);
explicit fvec4SIMD(
vec4 const & v);
////////////////////////////////////////
//// Conversion vector constructors
fvec4SIMD(vec2 const & v, float const & s1, float const & s2);
fvec4SIMD(float const & s1, vec2 const & v, float const & s2);
fvec4SIMD(float const & s1, float const & s2, vec2 const & v);
fvec4SIMD(vec3 const & v, float const & s);
fvec4SIMD(float const & s, vec3 const & v);
fvec4SIMD(vec2 const & v1, vec2 const & v2);
//fvec4SIMD(ivec4SIMD const & v);
//////////////////////////////////////
// Unary arithmetic operators
fvec4SIMD& operator= (fvec4SIMD const & v) GLM_DEFAULT;
fvec4SIMD& operator+=(fvec4SIMD const & v);
fvec4SIMD& operator-=(fvec4SIMD const & v);
fvec4SIMD& operator*=(fvec4SIMD const & v);
fvec4SIMD& operator/=(fvec4SIMD const & v);
fvec4SIMD& operator+=(float const & s);
fvec4SIMD& operator-=(float const & s);
fvec4SIMD& operator*=(float const & s);
fvec4SIMD& operator/=(float const & s);
fvec4SIMD& operator++();
fvec4SIMD& operator--();
//////////////////////////////////////
// Swizzle operators
template <comp X_, comp Y_, comp Z_, comp W_>
fvec4SIMD& swizzle();
template <comp X_, comp Y_, comp Z_, comp W_>
fvec4SIMD swizzle() const;
template <comp X_, comp Y_, comp Z_>
fvec4SIMD swizzle() const;
template <comp X_, comp Y_>
fvec4SIMD swizzle() const;
template <comp X_>
fvec4SIMD swizzle() const;
};
}//namespace detail
typedef glm::detail::fvec4SIMD simdVec4;
/// @addtogroup gtx_simd_vec4
/// @{
//! Convert a simdVec4 to a vec4.
/// @see gtx_simd_vec4
vec4 vec4_cast(
detail::fvec4SIMD const & x);
//! Returns x if x >= 0; otherwise, it returns -x.
/// @see gtx_simd_vec4
detail::fvec4SIMD abs(detail::fvec4SIMD const & x);
//! Returns 1.0 if x > 0, 0.0 if x = 0, or -1.0 if x < 0.
/// @see gtx_simd_vec4
detail::fvec4SIMD sign(detail::fvec4SIMD const & x);
//! Returns a value equal to the nearest integer that is less then or equal to x.
/// @see gtx_simd_vec4
detail::fvec4SIMD floor(detail::fvec4SIMD const & x);
//! Returns a value equal to the nearest integer to x
//! whose absolute value is not larger than the absolute value of x.
/// @see gtx_simd_vec4
detail::fvec4SIMD trunc(detail::fvec4SIMD const & x);
//! Returns a value equal to the nearest integer to x.
//! The fraction 0.5 will round in a direction chosen by the
//! implementation, presumably the direction that is fastest.
//! This includes the possibility that round(x) returns the
//! same value as roundEven(x) for all values of x.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD round(detail::fvec4SIMD const & x);
//! Returns a value equal to the nearest integer to x.
//! A fractional part of 0.5 will round toward the nearest even
//! integer. (Both 3.5 and 4.5 for x will return 4.0.)
///
/// @see gtx_simd_vec4
//detail::fvec4SIMD roundEven(detail::fvec4SIMD const & x);
//! Returns a value equal to the nearest integer
//! that is greater than or equal to x.
/// @see gtx_simd_vec4
detail::fvec4SIMD ceil(detail::fvec4SIMD const & x);
//! Return x - floor(x).
///
/// @see gtx_simd_vec4
detail::fvec4SIMD fract(detail::fvec4SIMD const & x);
//! Modulus. Returns x - y * floor(x / y)
//! for each component in x using the floating point value y.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD mod(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y);
//! Modulus. Returns x - y * floor(x / y)
//! for each component in x using the floating point value y.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD mod(
detail::fvec4SIMD const & x,
float const & y);
//! Returns the fractional part of x and sets i to the integer
//! part (as a whole number floating point value). Both the
//! return value and the output parameter will have the same
//! sign as x.
//! (From GLM_GTX_simd_vec4 extension, common function)
//detail::fvec4SIMD modf(
// detail::fvec4SIMD const & x,
// detail::fvec4SIMD & i);
//! Returns y if y < x; otherwise, it returns x.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD min(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y);
detail::fvec4SIMD min(
detail::fvec4SIMD const & x,
float const & y);
//! Returns y if x < y; otherwise, it returns x.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD max(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y);
detail::fvec4SIMD max(
detail::fvec4SIMD const & x,
float const & y);
//! Returns min(max(x, minVal), maxVal) for each component in x
//! using the floating-point values minVal and maxVal.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD clamp(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & minVal,
detail::fvec4SIMD const & maxVal);
detail::fvec4SIMD clamp(
detail::fvec4SIMD const & x,
float const & minVal,
float const & maxVal);
//! \return If genTypeU is a floating scalar or vector:
//! Returns x * (1.0 - a) + y * a, i.e., the linear blend of
//! x and y using the floating-point value a.
//! The value for a is not restricted to the range [0, 1].
//!
//! \return If genTypeU is a boolean scalar or vector:
//! Selects which vector each returned component comes
//! from. For a component of a that is false, the
//! corresponding component of x is returned. For a
//! component of a that is true, the corresponding
//! component of y is returned. Components of x and y that
//! are not selected are allowed to be invalid floating point
//! values and will have no effect on the results. Thus, this
//! provides different functionality than
//! genType mix(genType x, genType y, genType(a))
//! where a is a Boolean vector.
//!
//! From GLSL 1.30.08 specification, section 8.3
//!
//! \param[in] x Floating point scalar or vector.
//! \param[in] y Floating point scalar or vector.
//! \param[in] a Floating point or boolean scalar or vector.
//!
/// \todo Test when 'a' is a boolean.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD mix(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y,
detail::fvec4SIMD const & a);
//! Returns 0.0 if x < edge, otherwise it returns 1.0.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD step(
detail::fvec4SIMD const & edge,
detail::fvec4SIMD const & x);
detail::fvec4SIMD step(
float const & edge,
detail::fvec4SIMD const & x);
//! Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and
//! performs smooth Hermite interpolation between 0 and 1
//! when edge0 < x < edge1. This is useful in cases where
//! you would want a threshold function with a smooth
//! transition. This is equivalent to:
//! genType t;
//! t = clamp ((x - edge0) / (edge1 - edge0), 0, 1);
//! return t * t * (3 - 2 * t);
//! Results are undefined if edge0 >= edge1.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD smoothstep(
detail::fvec4SIMD const & edge0,
detail::fvec4SIMD const & edge1,
detail::fvec4SIMD const & x);
detail::fvec4SIMD smoothstep(
float const & edge0,
float const & edge1,
detail::fvec4SIMD const & x);
//! Returns true if x holds a NaN (not a number)
//! representation in the underlying implementation's set of
//! floating point representations. Returns false otherwise,
//! including for implementations with no NaN
//! representations.
///
/// @see gtx_simd_vec4
//bvec4 isnan(detail::fvec4SIMD const & x);
//! Returns true if x holds a positive infinity or negative
//! infinity representation in the underlying implementation's
//! set of floating point representations. Returns false
//! otherwise, including for implementations with no infinity
//! representations.
///
/// @see gtx_simd_vec4
//bvec4 isinf(detail::fvec4SIMD const & x);
//! Returns a signed or unsigned integer value representing
//! the encoding of a floating-point value. The floatingpoint
//! value's bit-level representation is preserved.
///
/// @see gtx_simd_vec4
//detail::ivec4SIMD floatBitsToInt(detail::fvec4SIMD const & value);
//! Returns a floating-point value corresponding to a signed
//! or unsigned integer encoding of a floating-point value.
//! If an inf or NaN is passed in, it will not signal, and the
//! resulting floating point value is unspecified. Otherwise,
//! the bit-level representation is preserved.
///
/// @see gtx_simd_vec4
//detail::fvec4SIMD intBitsToFloat(detail::ivec4SIMD const & value);
//! Computes and returns a * b + c.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD fma(
detail::fvec4SIMD const & a,
detail::fvec4SIMD const & b,
detail::fvec4SIMD const & c);
//! Splits x into a floating-point significand in the range
//! [0.5, 1.0) and an integral exponent of two, such that:
//! x = significand * exp(2, exponent)
//! The significand is returned by the function and the
//! exponent is returned in the parameter exp. For a
//! floating-point value of zero, the significant and exponent
//! are both zero. For a floating-point value that is an
//! infinity or is not a number, the results are undefined.
///
/// @see gtx_simd_vec4
//detail::fvec4SIMD frexp(detail::fvec4SIMD const & x, detail::ivec4SIMD & exp);
//! Builds a floating-point number from x and the
//! corresponding integral exponent of two in exp, returning:
//! significand * exp(2, exponent)
//! If this product is too large to be represented in the
//! floating-point type, the result is undefined.
///
/// @see gtx_simd_vec4
//detail::fvec4SIMD ldexp(detail::fvec4SIMD const & x, detail::ivec4SIMD const & exp);
//! Returns the length of x, i.e., sqrt(x * x).
///
/// @see gtx_simd_vec4
float length(
detail::fvec4SIMD const & x);
//! Returns the length of x, i.e., sqrt(x * x).
//! Less accurate but much faster than simdLength.
///
/// @see gtx_simd_vec4
float fastLength(
detail::fvec4SIMD const & x);
//! Returns the length of x, i.e., sqrt(x * x).
//! Slightly more accurate but much slower than simdLength.
///
/// @see gtx_simd_vec4
float niceLength(
detail::fvec4SIMD const & x);
//! Returns the length of x, i.e., sqrt(x * x).
///
/// @see gtx_simd_vec4
detail::fvec4SIMD length4(
detail::fvec4SIMD const & x);
//! Returns the length of x, i.e., sqrt(x * x).
//! Less accurate but much faster than simdLength4.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD fastLength4(
detail::fvec4SIMD const & x);
//! Returns the length of x, i.e., sqrt(x * x).
//! Slightly more accurate but much slower than simdLength4.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD niceLength4(
detail::fvec4SIMD const & x);
//! Returns the distance betwwen p0 and p1, i.e., length(p0 - p1).
///
/// @see gtx_simd_vec4
float distance(
detail::fvec4SIMD const & p0,
detail::fvec4SIMD const & p1);
//! Returns the distance betwwen p0 and p1, i.e., length(p0 - p1).
///
/// @see gtx_simd_vec4
detail::fvec4SIMD distance4(
detail::fvec4SIMD const & p0,
detail::fvec4SIMD const & p1);
//! Returns the dot product of x and y, i.e., result = x * y.
///
/// @see gtx_simd_vec4
float simdDot(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y);
//! Returns the dot product of x and y, i.e., result = x * y.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD dot4(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y);
//! Returns the cross product of x and y.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD cross(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y);
//! Returns a vector in the same direction as x but with length of 1.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD normalize(
detail::fvec4SIMD const & x);
//! Returns a vector in the same direction as x but with length of 1.
//! Less accurate but much faster than simdNormalize.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD fastNormalize(
detail::fvec4SIMD const & x);
//! If dot(Nref, I) < 0.0, return N, otherwise, return -N.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD simdFaceforward(
detail::fvec4SIMD const & N,
detail::fvec4SIMD const & I,
detail::fvec4SIMD const & Nref);
//! For the incident vector I and surface orientation N,
//! returns the reflection direction : result = I - 2.0 * dot(N, I) * N.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD reflect(
detail::fvec4SIMD const & I,
detail::fvec4SIMD const & N);
//! For the incident vector I and surface normal N,
//! and the ratio of indices of refraction eta,
//! return the refraction vector.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD refract(
detail::fvec4SIMD const & I,
detail::fvec4SIMD const & N,
float const & eta);
//! Returns the positive square root of x.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD sqrt(
detail::fvec4SIMD const & x);
//! Returns the positive square root of x with the nicest quality but very slow.
//! Slightly more accurate but much slower than simdSqrt.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD niceSqrt(
detail::fvec4SIMD const & x);
//! Returns the positive square root of x
//! Less accurate but much faster than sqrt.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD fastSqrt(
detail::fvec4SIMD const & x);
//! Returns the reciprocal of the positive square root of x.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD inversesqrt(
detail::fvec4SIMD const & x);
//! Returns the reciprocal of the positive square root of x.
//! Faster than inversesqrt but less accurate.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD fastInversesqrt(
detail::fvec4SIMD const & x);
/// @}
}//namespace glm
#include "simd_vec4.inl"
#if (GLM_COMPILER & GLM_COMPILER_VC)
# pragma warning(pop)
#endif
#endif//(GLM_ARCH != GLM_ARCH_PURE)