Compare commits
No commits in common. "master" and "joarad" have entirely different histories.
1000
data_dd2.csv
1000
data_dd2.csv
File diff suppressed because it is too large
Load Diff
5000
data_dd3.csv
5000
data_dd3.csv
File diff suppressed because it is too large
Load Diff
160
dt.py
160
dt.py
@ -1,160 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
from sklearn.model_selection import train_test_split
|
|
||||||
from sklearn.metrics import accuracy_score
|
|
||||||
|
|
||||||
class GadId3Classifier:
|
|
||||||
def fit(self, input, output):
|
|
||||||
data = input.copy()
|
|
||||||
data[output.name] = output
|
|
||||||
self.tree = self.decision_tree(data, data, input.columns, output.name)
|
|
||||||
|
|
||||||
def predict(self, input):
|
|
||||||
# convert input data into a dictionary of samples
|
|
||||||
samples = input.to_dict(orient='records')
|
|
||||||
predictions = []
|
|
||||||
|
|
||||||
# make a prediction for every sample
|
|
||||||
for sample in samples:
|
|
||||||
predictions.append(self.make_prediction(sample, self.tree, 1.0))
|
|
||||||
|
|
||||||
return predictions
|
|
||||||
|
|
||||||
def entropy(self, attribute_column):
|
|
||||||
# find unique values and their frequency counts for the given attribute
|
|
||||||
values, counts = np.unique(attribute_column, return_counts=True)
|
|
||||||
|
|
||||||
# calculate entropy for each unique value
|
|
||||||
entropy_list = []
|
|
||||||
|
|
||||||
for i in range(len(values)):
|
|
||||||
probability = counts[i]/np.sum(counts)
|
|
||||||
entropy_list.append(-probability*np.log2(probability))
|
|
||||||
|
|
||||||
# calculate sum of individual entropy values
|
|
||||||
total_entropy = np.sum(entropy_list)
|
|
||||||
|
|
||||||
return total_entropy
|
|
||||||
|
|
||||||
def information_gain(self, data, feature_attribute_name, target_attribute_name):
|
|
||||||
# find total entropy of given subset
|
|
||||||
total_entropy = self.entropy(data[target_attribute_name])
|
|
||||||
|
|
||||||
# find unique values and their frequency counts for the attribute to be split
|
|
||||||
values, counts = np.unique(data[feature_attribute_name], return_counts=True)
|
|
||||||
|
|
||||||
# calculate weighted entropy of subset
|
|
||||||
weighted_entropy_list = []
|
|
||||||
|
|
||||||
for i in range(len(values)):
|
|
||||||
subset_probability = counts[i]/np.sum(counts)
|
|
||||||
subset_entropy = self.entropy(data.where(data[feature_attribute_name]==values[i]).dropna()[target_attribute_name])
|
|
||||||
weighted_entropy_list.append(subset_probability*subset_entropy)
|
|
||||||
|
|
||||||
total_weighted_entropy = np.sum(weighted_entropy_list)
|
|
||||||
|
|
||||||
# calculate information gain
|
|
||||||
information_gain = total_entropy - total_weighted_entropy
|
|
||||||
|
|
||||||
return information_gain
|
|
||||||
|
|
||||||
def decision_tree(self, data, orginal_data, feature_attribute_names, target_attribute_name, parent_node_class=None):
|
|
||||||
# base cases:
|
|
||||||
# if data is pure, return the majority class of subset
|
|
||||||
unique_classes = np.unique(data[target_attribute_name])
|
|
||||||
if len(unique_classes) <= 1:
|
|
||||||
return unique_classes[0]
|
|
||||||
# if subset is empty, ie. no samples, return majority class of original data
|
|
||||||
elif len(data) == 0:
|
|
||||||
majority_class_index = np.argmax(np.unique(original_data[target_attribute_name], return_counts=True)[1])
|
|
||||||
return np.unique(original_data[target_attribute_name])[majority_class_index]
|
|
||||||
# if data set contains no features to train with, return parent node class
|
|
||||||
elif len(feature_attribute_names) == 0:
|
|
||||||
return parent_node_class
|
|
||||||
# if none of the above are true, construct a branch:
|
|
||||||
else:
|
|
||||||
# determine parent node class of current branch
|
|
||||||
majority_class_index = np.argmax(np.unique(data[target_attribute_name], return_counts=True)[1])
|
|
||||||
parent_node_class = unique_classes[majority_class_index]
|
|
||||||
|
|
||||||
# determine information gain values for each feature
|
|
||||||
# choose feature which best splits the data, ie. highest value
|
|
||||||
ig_values = [self.information_gain(data, feature, target_attribute_name) for feature in feature_attribute_names]
|
|
||||||
best_feature_index = np.argmax(ig_values)
|
|
||||||
best_feature = feature_attribute_names[best_feature_index]
|
|
||||||
|
|
||||||
# create tree structure, empty at first
|
|
||||||
tree = {best_feature: {}}
|
|
||||||
|
|
||||||
# remove best feature from available features, it will become the parent node
|
|
||||||
feature_attribute_names = [i for i in feature_attribute_names if i != best_feature]
|
|
||||||
|
|
||||||
# create nodes under parent node
|
|
||||||
parent_attribute_values = np.unique(data[best_feature])
|
|
||||||
for value in parent_attribute_values:
|
|
||||||
sub_data = data.where(data[best_feature] == value).dropna()
|
|
||||||
|
|
||||||
# call the algorithm recursively
|
|
||||||
subtree = self.decision_tree(sub_data, orginal_data, feature_attribute_names, target_attribute_name, parent_node_class)
|
|
||||||
|
|
||||||
# add subtree to original tree
|
|
||||||
tree[best_feature][value] = subtree
|
|
||||||
|
|
||||||
return tree
|
|
||||||
|
|
||||||
def make_prediction(self, sample, tree, default=1):
|
|
||||||
# map sample data to tree
|
|
||||||
for attribute in list(sample.keys()):
|
|
||||||
# check if feature exists in tree
|
|
||||||
if attribute in list(tree.keys()):
|
|
||||||
try:
|
|
||||||
result = tree[attribute][sample[attribute]]
|
|
||||||
except:
|
|
||||||
return default
|
|
||||||
|
|
||||||
result = tree[attribute][sample[attribute]]
|
|
||||||
|
|
||||||
# if more attributes exist within result, recursively find best result
|
|
||||||
if isinstance(result, dict):
|
|
||||||
return self.make_prediction(sample, result)
|
|
||||||
else:
|
|
||||||
return result
|
|
||||||
|
|
||||||
#data_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/processed.cleveland.data"
|
|
||||||
#df = pd.read_csv(data_url, header=None)
|
|
||||||
df = pd.read_csv("data_dd3.csv", header=None)
|
|
||||||
|
|
||||||
# rename known columns
|
|
||||||
columns = ['p_strength','p_agility','p_wisdom','p_health','p_melee_damage','p_ranged_damage','p_magic_damage',
|
|
||||||
'p_armor_defence','p_armor_magic_protection','e_strength','e_agility','e_wisdom','e_health','e_melee_damage',
|
|
||||||
'e_ranged_damage','e_magic_damage','e_armor_defence','e_armor_magic_protection','e_attack_type','strategy']
|
|
||||||
#columns = ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg',
|
|
||||||
#'thalach', 'exang', 'oldpeak', 'slope', 'ca', 'thal', 'disease_present']
|
|
||||||
df.columns = columns
|
|
||||||
|
|
||||||
# convert disease_present feature to binary
|
|
||||||
# df['disease_present'] = df.disease_present.replace([1,2,3,4], 1)
|
|
||||||
|
|
||||||
# drop rows with missing values, missing = ?
|
|
||||||
df = df.replace("?", np.nan)
|
|
||||||
df = df.dropna()
|
|
||||||
|
|
||||||
# organize data into input and output
|
|
||||||
#X = df.drop(columns="disease_present")
|
|
||||||
#y = df["disease_present"]
|
|
||||||
X = df.drop(columns="strategy")
|
|
||||||
y = df["strategy"]
|
|
||||||
|
|
||||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
|
|
||||||
|
|
||||||
# initialize and fit model
|
|
||||||
model = GadId3Classifier()
|
|
||||||
model.fit(X_train, y_train)
|
|
||||||
|
|
||||||
# return accuracy score
|
|
||||||
y_pred = model.predict(X_test)
|
|
||||||
a = accuracy_score(y_test, y_pred)
|
|
||||||
|
|
||||||
print(a)
|
|
||||||
#print(y_pred)
|
|
||||||
#print(y_test)
|
|
192
tree_data_gen.py
192
tree_data_gen.py
@ -1,192 +0,0 @@
|
|||||||
import random
|
|
||||||
from os import urandom
|
|
||||||
import statistics
|
|
||||||
import csv
|
|
||||||
|
|
||||||
|
|
||||||
def nominalizeOld(val, max_val):
|
|
||||||
return_value = "NONE"
|
|
||||||
if val > 0.8 * max_val:
|
|
||||||
return_value = "VERY_HIGH"
|
|
||||||
elif val > 0.6 * max_val:
|
|
||||||
return_value = "HIGH"
|
|
||||||
elif val > 0.4 * max_val:
|
|
||||||
return_value = "MEDIUM"
|
|
||||||
elif val > 0.2 * max_val:
|
|
||||||
return_value = "LOW"
|
|
||||||
elif val > 0:
|
|
||||||
return_value = "VERY_LOW"
|
|
||||||
return return_value
|
|
||||||
|
|
||||||
def nominalize(val, max_val):
|
|
||||||
return_value = "NONE"
|
|
||||||
if val > 0.66 * max_val:
|
|
||||||
return_value = "HIGH"
|
|
||||||
elif val > 0.33 * max_val:
|
|
||||||
return_value = "MEDIUM"
|
|
||||||
elif val > 0:
|
|
||||||
return_value = "LOW"
|
|
||||||
return return_value
|
|
||||||
|
|
||||||
|
|
||||||
class Stats:
|
|
||||||
def __init__(self):
|
|
||||||
self.strength = random.randint(1, 10)
|
|
||||||
self.agility = random.randint(1, 10)
|
|
||||||
self.wisdom = random.randint(1, 10)
|
|
||||||
self.health = random.randint(1, 50)
|
|
||||||
self.melee_wep_damage = random.randint(1, 10)
|
|
||||||
self.ranged_wep_damage = random.randint(1, 10)
|
|
||||||
self.magic_wep_damage = random.randint(1, 10)
|
|
||||||
self.armor_defence = random.randint(0, 5)
|
|
||||||
self.armor_magic_protection = random.randint(0, 5)
|
|
||||||
|
|
||||||
self.damage = 0
|
|
||||||
|
|
||||||
|
|
||||||
def meleeAttack(self, opponent):
|
|
||||||
attackValue = self.strength + random.randint(1, 6)
|
|
||||||
defenseValue = opponent.strength + opponent.armor_defence
|
|
||||||
damage = attackValue - defenseValue
|
|
||||||
if damage > 0:
|
|
||||||
opponent.damage += (damage + self.melee_wep_damage)
|
|
||||||
|
|
||||||
def rangeAttack(self, opponent):
|
|
||||||
attackValue = self.agility + random.randint(1, 6)
|
|
||||||
defenseValue = opponent.agility
|
|
||||||
damage = attackValue - defenseValue
|
|
||||||
if (damage > 0) and (damage + self.ranged_wep_damage - opponent.armor_defence > 0):
|
|
||||||
opponent.damage += (damage + self.ranged_wep_damage - opponent.armor_defence)
|
|
||||||
|
|
||||||
def magicAttack(self, opponent):
|
|
||||||
attackValue = self.wisdom + random.randint(1, 6)
|
|
||||||
defenseValue = opponent.wisdom
|
|
||||||
damage = attackValue - defenseValue
|
|
||||||
if (damage > 0) and (damage + self.magic_wep_damage - opponent.armor_magic_protection > 0):
|
|
||||||
opponent.damage += (damage + self.magic_wep_damage - opponent.armor_magic_protection)
|
|
||||||
|
|
||||||
def reset(self):
|
|
||||||
self.damage = 0
|
|
||||||
|
|
||||||
|
|
||||||
FIELDNAMES = ["p_strength",
|
|
||||||
"p_agility",
|
|
||||||
"p_wisdom",
|
|
||||||
"p_health",
|
|
||||||
"p_melee_damage",
|
|
||||||
"p_ranged_damage",
|
|
||||||
"p_magic_damage",
|
|
||||||
"p_armor_defence",
|
|
||||||
"p_armor_magic_protection",
|
|
||||||
"e_strength",
|
|
||||||
"e_agility",
|
|
||||||
"e_wisdom",
|
|
||||||
"e_health",
|
|
||||||
"e_damage",
|
|
||||||
"e_armor_defence",
|
|
||||||
"e_armor_magic_protection",
|
|
||||||
"e_attack_type",
|
|
||||||
"strategy"]
|
|
||||||
RESULT_FILE = open('data.csv', 'w', newline='')
|
|
||||||
FILE_WRITER = csv.writer(RESULT_FILE, dialect='excel', delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
|
|
||||||
FILE_WRITER.writerow(FIELDNAMES)
|
|
||||||
|
|
||||||
|
|
||||||
SETUP_RESULTS = [[], [], []]
|
|
||||||
|
|
||||||
MAX_COMBAT_TIME = 20
|
|
||||||
|
|
||||||
def try_combat(my_seed, p, e, player_att_type, enemy_att_type):
|
|
||||||
random.seed(my_seed)
|
|
||||||
current_iteration = 0
|
|
||||||
while True:
|
|
||||||
if player_att_type == 0:
|
|
||||||
p.meleeAttack(e)
|
|
||||||
elif player_att_type == 1:
|
|
||||||
p.rangeAttack(e)
|
|
||||||
else:
|
|
||||||
p.magicAttack(e)
|
|
||||||
|
|
||||||
if e.damage >= e.health:
|
|
||||||
SETUP_RESULTS[player_att_type].append(p.health - p.damage)
|
|
||||||
break
|
|
||||||
|
|
||||||
if enemy_att_type == 0:
|
|
||||||
e.meleeAttack(p)
|
|
||||||
elif enemy_att_type == 1:
|
|
||||||
e.rangeAttack(p)
|
|
||||||
else:
|
|
||||||
e.magicAttack(p)
|
|
||||||
|
|
||||||
if p.damage >= p.health:
|
|
||||||
SETUP_RESULTS[player_att_type].append(0)
|
|
||||||
break
|
|
||||||
|
|
||||||
current_iteration += 1
|
|
||||||
if current_iteration >= MAX_COMBAT_TIME:
|
|
||||||
SETUP_RESULTS[player_att_type].append(0)
|
|
||||||
break
|
|
||||||
|
|
||||||
p.reset()
|
|
||||||
e.reset()
|
|
||||||
|
|
||||||
for trial in range(10000):
|
|
||||||
stat_seed = urandom(16)
|
|
||||||
random.seed(stat_seed)
|
|
||||||
|
|
||||||
player = Stats()
|
|
||||||
enemy = Stats()
|
|
||||||
enemy_attack_type = random.randint(0, 2) # Enemy weapon choice
|
|
||||||
|
|
||||||
for i in range(30):
|
|
||||||
combat_seed = urandom(16)
|
|
||||||
try_combat(combat_seed, player, enemy, 0, enemy_attack_type)
|
|
||||||
try_combat(combat_seed, player, enemy, 1, enemy_attack_type)
|
|
||||||
try_combat(combat_seed, player, enemy, 2, enemy_attack_type)
|
|
||||||
|
|
||||||
for i, series in enumerate(SETUP_RESULTS):
|
|
||||||
SETUP_RESULTS[i] = statistics.mean(series)
|
|
||||||
|
|
||||||
strategy = "PASS"
|
|
||||||
if any(SETUP_RESULTS):
|
|
||||||
max_index = SETUP_RESULTS.index(max(SETUP_RESULTS))
|
|
||||||
if max_index == 0:
|
|
||||||
strategy = "MELEE"
|
|
||||||
elif max_index == 1:
|
|
||||||
strategy = "RANGED"
|
|
||||||
elif max_index == 2:
|
|
||||||
strategy = "MAGIC"
|
|
||||||
|
|
||||||
enemy_damage = 0
|
|
||||||
if enemy_attack_type == 0:
|
|
||||||
enemy_attack_type = "MELEE"
|
|
||||||
enemy_damage = enemy.melee_wep_damage
|
|
||||||
elif enemy_attack_type == 1:
|
|
||||||
enemy_attack_type = "RANGED"
|
|
||||||
enemy_damage = enemy.ranged_wep_damage
|
|
||||||
elif enemy_attack_type == 2:
|
|
||||||
enemy_attack_type = "MAGIC"
|
|
||||||
enemy_damage = enemy.magic_wep_damage
|
|
||||||
|
|
||||||
FILE_WRITER.writerow([nominalize(player.strength, 10),
|
|
||||||
nominalize(player.agility, 10),
|
|
||||||
nominalize(player.wisdom, 10),
|
|
||||||
nominalize(player.health, 50),
|
|
||||||
nominalize(player.melee_wep_damage, 10),
|
|
||||||
nominalize(player.ranged_wep_damage, 10),
|
|
||||||
nominalize(player.magic_wep_damage, 10),
|
|
||||||
nominalize(player.armor_defence, 5),
|
|
||||||
nominalize(player.armor_magic_protection, 5),
|
|
||||||
nominalize(enemy.strength, 10),
|
|
||||||
nominalize(enemy.agility, 10),
|
|
||||||
nominalize(enemy.wisdom, 10),
|
|
||||||
nominalize(enemy.health, 50),
|
|
||||||
nominalize(enemy_damage, 10),
|
|
||||||
nominalize(enemy.armor_defence, 5),
|
|
||||||
nominalize(enemy.armor_magic_protection, 5),
|
|
||||||
enemy_attack_type,
|
|
||||||
strategy])
|
|
||||||
SETUP_RESULTS = [[], [], []]
|
|
||||||
if trial%100 == 0:
|
|
||||||
print("Trials done: " + str(trial))
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user