Plankton_Detector/PlanktonDetector/DetectionApp/views.py

93 lines
3.3 KiB
Python
Raw Normal View History

2023-12-13 02:11:29 +01:00
from typing import Any
from django.db.models.query import QuerySet
from django.http import HttpResponse
from django.shortcuts import render
2023-12-06 18:12:31 +01:00
from django.views import View
from .forms import DetectForm
2023-12-13 02:11:29 +01:00
from django.views.generic import ListView, DetailView
from django.contrib.auth.decorators import login_required
from django.utils.decorators import method_decorator
from .models import PredictionBatch, UploadImage, PredictedImage
2023-12-13 02:11:29 +01:00
from .utils import predict_image
from django.contrib.auth.mixins import LoginRequiredMixin
2023-12-06 18:12:31 +01:00
class DetectView(View):
form_class = DetectForm
template_name = "upload.html"
def get(self, request, *args, **kwargs):
form = self.form_class()
return render(request, "upload.html", {"form": form})
2023-12-06 18:12:31 +01:00
2023-12-13 02:11:29 +01:00
@method_decorator(login_required)
2023-12-06 18:12:31 +01:00
def post(self, request, *args, **kwargs):
form = self.form_class(request.POST, request.FILES)
2023-12-19 17:33:46 +01:00
files = request.FILES.getlist("image")
predictions = []
2023-12-06 18:12:31 +01:00
if form.is_valid():
pred_batch = PredictionBatch.objects.create(owner=request.user)
2023-12-19 17:33:46 +01:00
for f in files:
image = UploadImage(
image=f,
)
image.save()
prediciton_results = predict_image(image)
2024-01-14 23:12:35 +01:00
image.predicted_image_url = f"{image.image.name.split('.')[0]}_predicted.{image.image.name.split('.')[-1]}"
2023-12-19 17:33:46 +01:00
image.save()
try:
2023-12-23 17:01:39 +01:00
results_metrics = prediciton_results
2023-12-19 17:33:46 +01:00
except IndexError as e:
2023-12-23 17:01:39 +01:00
predicted_image = PredictedImage.objects.create(
2023-12-19 17:33:46 +01:00
original_image=image,
image=image.predicted_image_url,
prediction_data={"data": "no predicitions"},
2023-12-19 17:33:46 +01:00
)
else:
2023-12-23 17:01:39 +01:00
predicted_image = PredictedImage.objects.create(
2023-12-19 17:33:46 +01:00
original_image=image,
image=image.predicted_image_url,
2023-12-23 17:01:39 +01:00
prediction_data=results_metrics,
2023-12-19 17:33:46 +01:00
)
2023-12-23 17:01:39 +01:00
predictions.append(predicted_image)
pred_batch.images.add(*predictions)
pred_batch.save()
2023-12-06 18:12:31 +01:00
return render(
request,
2023-12-19 17:33:46 +01:00
"results.html",
2023-12-06 18:12:31 +01:00
{
2023-12-13 02:11:29 +01:00
"img_saved": True,
"img": pred_batch,
2023-12-06 18:12:31 +01:00
},
)
else:
return render(request, "upload.html", {"form": form})
2023-12-13 02:11:29 +01:00
class ListHistory(LoginRequiredMixin, ListView):
model = PredictionBatch
queryset = PredictionBatch.objects.all()
2023-12-13 02:11:29 +01:00
template_name = "history.html"
2023-12-19 17:33:46 +01:00
paginate_by = 3
2023-12-06 18:12:31 +01:00
2023-12-13 02:11:29 +01:00
def get_queryset(self) -> QuerySet[Any]:
queryset = PredictionBatch.objects.filter(owner=self.request.user).order_by(
"-date_predicted"
)
2023-12-13 02:11:29 +01:00
return queryset
2023-12-06 18:12:31 +01:00
2023-12-13 02:11:29 +01:00
class DetectionDetails(LoginRequiredMixin, DetailView):
model = PredictionBatch
template_name = "results.html"
context_object_name = "img"
def download_pred_res(request, pk):
pred_batch = PredictionBatch.objects.get(pk=pk)
response = HttpResponse(content_type="text/plain")
response["Content-Disposition"] = "attachment; filename=predictions.txt"
for img in pred_batch.images.all():
response.write(img.prediction_data)
return response