Plankton_Detector/PlanktonDetector/DetectionApp/utils.py

47 lines
1.4 KiB
Python
Raw Normal View History

2023-12-13 02:11:29 +01:00
from django.conf import settings
from PIL import Image, ImageDraw
2024-01-14 23:12:35 +01:00
import os
import requests
import base64
2023-12-13 02:11:29 +01:00
url = "https://detect.roboflow.com/plankton-vhsho/1"
api_key = os.environ["API_KEY_ROBO"]
2023-12-13 02:11:29 +01:00
def predict_image(image):
with open(image.image.path, "rb") as f:
enc_image = base64.b64encode(f.read())
results = requests.post(
url=url,
params={"api_key": api_key},
data=enc_image,
headers={"Content-Type": "application/x-www-form-urlencoded"},
2023-12-13 02:11:29 +01:00
)
for box in results.json()["predictions"]:
save_image(box, image)
2024-01-14 23:12:35 +01:00
return results.json()
def save_image(box, source_img):
x1 = box["x"] - box["width"] / 2
x2 = box["x"] + box["width"] / 2
y1 = box["y"] - box["height"] / 2
y2 = box["y"] + box["height"] / 2
bounding_box = ((x1, y1), (x2, y2))
class_ = box["class"]
source = Image.open(source_img.image.path).convert("RGB")
draw = ImageDraw.Draw(source)
text_pos = (bounding_box[0][0] + 5, bounding_box[0][1] + 5)
left, top, right, bottom = draw.textbbox(text_pos, class_, font_size=15)
draw.rectangle((left, top - 4, right + 5, bottom + 5), fill="blue")
draw.text(text_pos, class_, color="white", font_size=15)
draw.rectangle(bounding_box, width=5, outline="blue")
source.save(
f"{settings.MEDIA_ROOT}/{source_img.image.name.split('.')[0]}_predicted.{source_img.image.name.split('.')[-1]}",
"JPEG",
)