ium_458023/Jenkinsfile1

68 lines
2.1 KiB
Plaintext

pipeline {
agent any
parameters{
string(
defaultValue: 'mattkrawl',
description: 'Kaggle username',
name: 'KAGGLE_USERNAME',
trim: false
)
password(
defaultValue: '8e6132e627c5c176f7e19d880270d22e',
description: 'Kaggle token taken from kaggle.json file, as described in https://github.com/Kaggle/kaggle-api#api-credentials',
name: 'KAGGLE_KEY'
)
string(
defaultValue: '100',
description: 'CUTOFF',
name: 'CUTOFF',
trim: false
)
}
stages {
stage('clear_all') {
steps {
sh 'rm -rf *'
}
}
stage('Build'){
steps{
//cloning github
sh 'git clone https://git.wmi.amu.edu.pl/s458023/ium_458023'
//running Build
withEnv(["KAGGLE_USERNAME=${params.KAGGLE_USERNAME}",
"KAGGLE_KEY=${params.KAGGLE_KEY}" ]) {
// downloading and unzipping kaggle dataset
sh 'kaggle datasets download -d arnabchaki/data-science-salaries-2023'
sh 'unzip data-science-salaries-2023.zip -d ./ium_458023'
// removing zip file
sh 'rm data-science-salaries-2023.zip'
sh 'ls -a'
sh 'ls -a ./ium_458023'
}
}
}
stage('Docker'){
agent{
dockerfile{
filename 'Dockerfile'
dir 'ium_458023'
reuseNode true
}
}
steps{
sh 'ls -a'
sh 'python .ium_458023/create-dataset.py'
archiveArtifacts 'salary_test.csv'
archiveArtifacts 'salary_dev.csv'
archiveArtifacts 'salary_train.csv'
}
}
}
}