Genetical algorithm
This commit is contained in:
parent
87d29f24e0
commit
de1ce36aed
@ -1,3 +1,8 @@
|
|||||||
|
import random
|
||||||
|
from copy import copy
|
||||||
|
import settings
|
||||||
|
import tree
|
||||||
|
|
||||||
|
|
||||||
def evaluate_values(fuel, water, feritizer, seeds, fields_with_plants, k):
|
def evaluate_values(fuel, water, feritizer, seeds, fields_with_plants, k):
|
||||||
fields_to_sow = 0
|
fields_to_sow = 0
|
||||||
@ -61,3 +66,56 @@ def fitness(solution, fields_plants, k):
|
|||||||
ans = evaluate_values(fuel, water, feritizer, seeds, fields_plants, k)
|
ans = evaluate_values(fuel, water, feritizer, seeds, fields_plants, k)
|
||||||
return ans
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def solution(fields_with_plants, l):
|
||||||
|
solutions = []
|
||||||
|
ranked_solutions = []
|
||||||
|
for i in range(10000):
|
||||||
|
solution = []
|
||||||
|
fuel = random.randint(0, 2000)
|
||||||
|
water = random.randint(0, 100)
|
||||||
|
feritizer = random.randint(0, 100)
|
||||||
|
seeds = random.randint(0, 100)
|
||||||
|
solution.append(fuel)
|
||||||
|
solution.append(water)
|
||||||
|
solution.append(feritizer)
|
||||||
|
solution.append(seeds)
|
||||||
|
solutions.append(solution)
|
||||||
|
for s in solutions:
|
||||||
|
ranked_solutions.append((fitness(s, fields_with_plants, l), s))
|
||||||
|
ranked_solutions.sort()
|
||||||
|
ranked_solutions.reverse()
|
||||||
|
best_solutions = ranked_solutions[:100]
|
||||||
|
k = 1
|
||||||
|
print("Gen 1 best solution: " + str(ranked_solutions[0]))
|
||||||
|
for q in range(4):
|
||||||
|
k += 1
|
||||||
|
random_cross = random.randint(0, 3)
|
||||||
|
random_mutation_place = random.randint(0, 3)
|
||||||
|
random_mutation = random.randint(1, 5)
|
||||||
|
ranked_solutions = []
|
||||||
|
solutions = []
|
||||||
|
solutions.append(best_solutions[0][1])
|
||||||
|
for i in range(100):
|
||||||
|
for j in range(100):
|
||||||
|
if i == j:
|
||||||
|
continue
|
||||||
|
random_mutation_chance = random.randint(1, 100)
|
||||||
|
solution = copy(best_solutions[i][1])
|
||||||
|
solution[random_cross:4] = best_solutions[j][1][random_cross:4]
|
||||||
|
if random_mutation_chance <= 3:
|
||||||
|
if random_mutation_place == 0:
|
||||||
|
solution[random_mutation_place] = solution[random_mutation_place] + random_mutation * 30
|
||||||
|
else:
|
||||||
|
solution[random_mutation_place] = solution[random_mutation_place] + random_mutation
|
||||||
|
solutions.append(copy(solution))
|
||||||
|
|
||||||
|
for s in solutions:
|
||||||
|
ranked_solutions.append((fitness(s, fields_with_plants, l), s))
|
||||||
|
ranked_solutions.sort()
|
||||||
|
ranked_solutions.reverse()
|
||||||
|
|
||||||
|
best_solutions = ranked_solutions[:100]
|
||||||
|
print("Gen " + str(k) + " best solution: " + str(ranked_solutions[0]))
|
||||||
|
|
||||||
|
return ranked_solutions[0][1][0], ranked_solutions[0][1][1], ranked_solutions[0][1][2], ranked_solutions[0][1][3]
|
||||||
|
Loading…
Reference in New Issue
Block a user