SzybciorSmartTraktor/tree.py
2022-05-13 08:46:36 +02:00

30 lines
1.2 KiB
Python

import matplotlib.image as pltimg
import matplotlib.pyplot as plt
import os
import pandas
import pickle
import pydotplus
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
def treelearn():
if os.path.exists("assets/tree.pkl"):
dtree = pickle.load(open(os.path.join('assets', "tree.pkl"), "rb"))
else:
df = pandas.read_csv(os.path.join('assets/data', 'data.csv'))
columns = ['Fuel','Water','Fertalizer','Carrots','Potatoes','Wheat','X','Y','seeds']
x = df[columns]
y = df['back to station']
dtree = DecisionTreeClassifier()
dtree = dtree.fit(x, y)
pickle.dump(dtree, open(os.path.join('assets', "tree.pkl"), "wb"))
data = tree.export_graphviz(dtree, out_file=None, feature_names=columns)
graph = pydotplus.graph_from_dot_data(data)
graph.write_png(os.path.join('assets', 'mytree.png'))
img = pltimg.imread(os.path.join('assets', 'mytree.png'))
imgplot = plt.imshow(img)
plt.show()
return dtree
def make_decision(tree, Fuel,Water,Fertalizer,Carrots,Potatoes,Wheat,X,Y,seeds):
decision = tree.predict([[Fuel, Water, Fertalizer, Carrots, Potatoes, Wheat, X, Y, seeds]])
return decision