import copy import json from collections import defaultdict from datetime import datetime, timedelta from io import BytesIO from pathlib import Path from typing import Any, Generator, List, TextIO, Tuple, Union import pandas as pd from flask import current_app from reportlab.lib import colors from reportlab.lib.enums import TA_CENTER from reportlab.lib.styles import getSampleStyleSheet from reportlab.lib.units import inch, mm from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont from reportlab.platypus import PageBreak, Paragraph, SimpleDocTemplate, Table from werkzeug.datastructures import FileStorage from ..base.mode import ModeGroups from ..examination_schedule.models import TermOfDefence from ..students.models import Group, ProjectGradeSheet, Student from .exceptions import InvalidNameOrTypeHeaderException def check_columns(df: pd.DataFrame) -> bool: headers = set(df.keys().values) column_names = ["NAZWISKO", "IMIE", "INDEKS", "EMAIL"] column_types = ["object", "object", "int", "object"] return all((column_name in headers for column_name in column_names)) and all( ( str(df.dtypes[column_name]).startswith(column_type) for column_name, column_type in zip(column_names, column_types) ) ) def parse_csv( file: Union[FileStorage, TextIO], year_group_id: int ) -> Generator[Student, Any, None]: df = pd.read_csv(file) if not check_columns(df): raise InvalidNameOrTypeHeaderException students = ( Student( last_name=dict(item.items())["NAZWISKO"], first_name=dict(item.items())["IMIE"], index=dict(item.items())["INDEKS"], email=dict(item.items())["EMAIL"], year_group_id=year_group_id, ) for _, item in df.iterrows() ) return students def map_project_supervisors(groups: List[Group]) -> dict: i = 1 mapped_project_supervisors = {} for group in groups: if group.project_supervisor_id not in mapped_project_supervisors.keys(): mapped_project_supervisors[group.project_supervisor_id] = i i += 1 return mapped_project_supervisors def generate_csv(students_and_groups: List[Tuple[Student, Group]]) -> str: headers = [ "INDEKS", "IMIE", "NAZWISKO", "EMAIL", "CDYD_KOD", "PRZ_KOD", "TZAJ_KOD", "GR_NR", "PRG_KOD", ] mapped_project_supervisors_id = map_project_supervisors( [group for _, group in students_and_groups] ) data = [ ( student.index, student.first_name, student.last_name, student.email, group.cdyd_kod, group.prz_kod, group.tzaj_kod, mapped_project_supervisors_id[group.project_supervisor_id], None, ) for student, group in students_and_groups ] dataframe = defaultdict(list) for row in data: for idx, item in enumerate(row): dataframe[headers[idx]].append(item) df = pd.DataFrame(dataframe) return df.to_csv(index=False) def generate_range_dates( start_date: datetime, end_date: datetime, step_in_minutes: int ) -> Generator[Union[datetime, timedelta], Any, None]: current_date = copy.copy(start_date) while True: next_date = current_date + timedelta(minutes=step_in_minutes) if next_date > end_date: break yield current_date current_date = copy.copy(next_date) def generate_examination_schedule_pdf_file( title: str, nested_term_of_defences: List[List[TermOfDefence]], base_dir: Path ) -> bytes: pagesize = (297 * mm, 210 * mm) headers = [ "lp.", "Godzina", "Nazwa projektu", "Opiekun", "Zespol", "Komisja", "Uwagi", ] pdf_buffer = BytesIO() my_doc = SimpleDocTemplate( pdf_buffer, pagesize=pagesize, topMargin=1 * inch, leftMargin=1 * inch, rightMargin=1 * inch, bottomMargin=1 * inch, title=title, ) pdfmetrics.registerFont(TTFont("Lato", base_dir / "fonts" / "Lato.ttf")) style = getSampleStyleSheet() bodyText = style["BodyText"] bodyText.fontName = "Lato" normal = style["Heading1"] normal.alignment = TA_CENTER flowables = [] # print(nested_enrollments) for term_of_defences in nested_term_of_defences: if len(term_of_defences) == 0: continue date = datetime.strftime(term_of_defences[0].start_date.date(), "%d.%m.%Y") paragraph_1 = Paragraph(f"{title} ~ {date}", normal) flowables.append(paragraph_1) data = [headers] for idx, td in enumerate(term_of_defences, start=1): new_date = td.start_date + timedelta(hours=2) group_name = td.group.name if td.group is not None else "" if group_name != "": ps = td.group.project_supervisor project_supervisor_fullname = f"{ps.first_name[0]}. {ps.last_name}" students = td.group.students team = ", ".join([f"{s.first_name} {s.last_name}" for s in students]) else: project_supervisor_fullname = "" team = "" members = td.members_of_committee if len(members) == 0: committee = "" else: members_iter = (f"{m.first_name[0]}. {m.last_name}" for m in members) committee = ", ".join(members_iter) data.append( [ str(idx), new_date.strftime("%H:%M"), Paragraph(group_name, bodyText), Paragraph(project_supervisor_fullname, bodyText), Paragraph(team, bodyText), Paragraph(committee, bodyText), ] ) # print(data) table = Table( data=data, style=[ ("GRID", (0, 0), (-1, -1), 0.5, colors.black), ("BACKGROUND", (0, 0), (-1, 0), colors.HexColor("#A6F1A6")), ("BACKGROUND", (0, 0), (1, -1), colors.HexColor("#A6F1A6")), ], colWidths=[ 0.25 * inch, 0.7 * inch, 1.6 * inch, 1.5 * inch, 2.5 * inch, 2.2 * inch, 2 * inch, ], ) flowables.append(table) flowables.append(PageBreak()) my_doc.build(flowables) pdf_value = pdf_buffer.getvalue() pdf_buffer.close() return pdf_value def get_duration_time(mode: str) -> int: duration_time = None if mode == ModeGroups.NON_STATIONARY.value: duration_time = 20 elif mode in [ ModeGroups.STATIONARY.value, ModeGroups.ENGLISH_SPEAKING_STATIONARY.value, ]: duration_time = 30 return duration_time def load_weight_for_project_grade_sheet() -> Union[dict, None]: base_dir = current_app.config.get("BASE_DIR") config_dir = base_dir / "config" with open(config_dir / "weights_project_grade_sheet.json") as f: data = json.load(f) return data def get_criterion_by_weight_key(weight_key: str) -> str: if weight_key.startswith("presentation"): return "presentation" if weight_key.startswith("documentation"): return "documentation" if weight_key.startswith("group_work"): return "group_work" return "product_project" def grade_in_percentage(term_key: str, term_points: dict) -> str: try: criterions = { "presentation": current_app.config.get(f"PRESENTATION_WEIGHT_{term_key}"), "group_work": current_app.config.get(f"GROUP_WORK_WEIGHT_{term_key}"), "documentation": current_app.config.get(f"DOCUMENTATION_WEIGHT_{term_key}"), "product_project": current_app.config.get( f"PRODUCT_PROJECT_WEIGHT_{term_key}" ), } result = 0 for criterion_key, criterion_weight in criterions.items(): result += ( term_points[criterion_key]["gained_points"] / term_points[criterion_key]["all_points"] * criterion_weight ) result /= sum(criterions.values()) except ZeroDivisionError: result = 0 return result def calculate_points_for_both_terms( weights: dict, project_grade_sheets: List[ProjectGradeSheet] ) -> list: terms = [] for pgs in project_grade_sheets: if pgs is None: terms.append((0, 0)) continue first_term_points = { "presentation": {"gained_points": 0, "all_points": 0}, "documentation": {"gained_points": 0, "all_points": 0}, "group_work": {"gained_points": 0, "all_points": 0}, "product_project": {"gained_points": 0, "all_points": 0}, } second_term_points = copy.deepcopy(first_term_points) for weight_key, weight_value in weights.items(): points = ( first_term_points if weight_key.endswith("1") else second_term_points ) criterion = get_criterion_by_weight_key(weight_key) try: attribute_value = getattr(pgs, weight_key) except AttributeError: attribute_value = 0 points[criterion]["gained_points"] += attribute_value / 4 * weight_value points[criterion]["all_points"] += weight_value points_1 = round(grade_in_percentage("FIRST_TERM", first_term_points) * 100, 1) points_2 = round( grade_in_percentage("SECOND_TERM", second_term_points) * 100, 1 ) terms.append((points_1, points_2)) return terms def attach_points_for_first_and_second_term_to_group_models(items: List[Group]) -> None: weights = load_weight_for_project_grade_sheet() pgs = [] for g in items: if len(g.project_grade_sheet) == 0: pgs.append(None) else: pgs.append(g.project_grade_sheet[0]) calculated_points = calculate_points_for_both_terms(weights, pgs) for group, points in zip(items, calculated_points): group.points_for_first_term = points[0] group.points_for_second_term = points[1]