Generic_DialogSystem/DialogManager.ipynb

207 lines
6.3 KiB
Plaintext
Raw Normal View History

2023-05-25 12:42:01 +02:00
{
"cells": [
{
"cell_type": "code",
2023-05-25 13:40:17 +02:00
"execution_count": 57,
2023-05-25 12:42:01 +02:00
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import os\n",
"\n",
"\n",
"class DST():\n",
" def __init__(self):\n",
" self.state = json.load(open('dictionary.json'))\n",
"\n",
" def update(self, user_act=None):\n",
" for intent, domain, slot, value in user_act:\n",
" domain = domain.lower()\n",
" intent = intent.lower()\n",
" slot = slot.lower()\n",
" \n",
" if domain not in self.state['belief_state']:\n",
" continue\n",
"\n",
" if intent == 'inform':\n",
" if slot == 'none' or slot == '':\n",
" continue\n",
"\n",
" domain_dic = self.state['belief_state'][domain]\n",
"\n",
" if slot in domain_dic:\n",
" self.state['belief_state'][domain][slot] = value\n",
"\n",
" elif intent == 'request':\n",
" if domain not in self.state['request_state']:\n",
" self.state['request_state'][domain] = {}\n",
" if slot not in self.state['request_state'][domain]:\n",
" self.state['request_state'][domain][slot] = 0\n",
2023-05-25 13:40:17 +02:00
" \n",
" self.state['user_action'] = user_act\n",
2023-05-25 12:42:01 +02:00
" return self.state"
]
},
{
"cell_type": "code",
2023-05-25 13:40:17 +02:00
"execution_count": 58,
2023-05-25 12:42:01 +02:00
"metadata": {},
"outputs": [],
"source": [
"dst = DST()\n",
2023-05-25 13:40:17 +02:00
"user_act = [('inform', 'payment', 'type', 'credit card'), ('inform', 'product', 'name', 'iPhone'), ('request', 'product', 'type', 'warzywo')]\n",
2023-05-25 12:42:01 +02:00
"state = dst.update(user_act)"
]
},
{
"cell_type": "code",
2023-05-25 13:40:17 +02:00
"execution_count": 59,
2023-05-25 12:42:01 +02:00
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'payment': {'type': 'credit card', 'amount': '', 'loyalty_card': ''}, 'delivery': {'type': '', 'address': '', 'time': ''}, 'product': {'name': 'iPhone', 'type': '', 'brand': '', 'price': '', 'quantity': '', 'quality': ''}}\n",
2023-05-25 13:40:17 +02:00
"{'product': {'type': 0}}\n"
2023-05-25 12:42:01 +02:00
]
2023-05-25 13:40:17 +02:00
},
{
"data": {
"text/plain": [
"{'user_act': [],\n",
" 'system_act': [],\n",
" 'belief_state': {'payment': {'type': 'credit card',\n",
" 'amount': '',\n",
" 'loyalty_card': ''},\n",
" 'delivery': {'type': '', 'address': '', 'time': ''},\n",
" 'product': {'name': 'iPhone',\n",
" 'type': '',\n",
" 'brand': '',\n",
" 'price': '',\n",
" 'quantity': '',\n",
" 'quality': ''}},\n",
" 'request_state': {'product': {'type': 0}},\n",
" 'terminated': False,\n",
" 'history': [],\n",
" 'user_action': [('inform', 'payment', 'type', 'credit card'),\n",
" ('inform', 'product', 'name', 'iPhone'),\n",
" ('request', 'product', 'type', 'warzywo')]}"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
2023-05-25 12:42:01 +02:00
}
],
"source": [
"print(state['belief_state'])\n",
2023-05-25 13:40:17 +02:00
"print(state['request_state'])\n",
"dst.state"
2023-05-25 12:42:01 +02:00
]
2023-05-25 13:32:35 +02:00
},
{
"cell_type": "code",
2023-05-25 13:40:17 +02:00
"execution_count": 60,
2023-05-25 13:32:35 +02:00
"metadata": {},
"outputs": [],
"source": [
"from collections import defaultdict\n",
"import copy\n",
"import json\n",
"from copy import deepcopy\n",
"\n",
"\n",
"\n",
2023-05-25 13:40:17 +02:00
"class SimpleRulePolicy():\n",
2023-05-25 13:32:35 +02:00
" def __init__(self):\n",
2023-05-25 13:40:17 +02:00
" self.db = json.load(open('product_db.json'))\n",
2023-05-25 13:32:35 +02:00
"\n",
" def predict(self, state):\n",
" self.results = []\n",
" system_action = defaultdict(list)\n",
" user_action = defaultdict(list)\n",
"\n",
" for intent, domain, slot, value in state['user_action']:\n",
" user_action[(domain.lower(), intent.lower())].append((slot.lower(), value))\n",
"\n",
" for user_act in user_action:\n",
" self.update_system_action(user_act, user_action, state, system_action)\n",
"\n",
" # Reguła 3\n",
2023-05-25 13:40:17 +02:00
" \n",
2023-05-25 13:32:35 +02:00
"\n",
" system_acts = [[intent, domain, slot, value] for (domain, intent), slots in system_action.items() for slot, value in slots]\n",
" state['system_action'] = system_acts\n",
" return system_acts\n",
"\n",
" def update_system_action(self, user_act, user_action, state, system_action):\n",
" domain, intent = user_act\n",
"\n",
" # Reguła 1\n",
" if intent == 'request':\n",
" if len(self.results) == 0:\n",
" system_action[(domain, 'NoOffer')] = []\n",
" else:\n",
" for slot in user_action[user_act]: \n",
" if slot[0] in self.results[0]:\n",
" system_action[(domain, 'Inform')].append([slot[0], self.results[0].get(slot[0], 'unknown')])\n",
"\n",
" # Reguła 2\n",
" elif intent == 'inform':\n",
" if len(self.results) == 0:\n",
" system_action[(domain, 'NoOffer')] = []\n",
" else:\n",
" system_action[(domain, 'Inform')].append(['Choice', str(len(self.results))])\n",
" choice = self.results[0]\n",
"\n",
" if domain in [\"product\"]:\n",
" system_action[(domain, 'Recommend')].append(['Name', choice['name']])"
]
2023-05-25 13:40:17 +02:00
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"policy = SimpleRulePolicy()\n",
"policy.predict(dst.state)"
]
2023-05-25 12:42:01 +02:00
}
],
"metadata": {
"kernelspec": {
"display_name": "py38",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}