{ "cells": [ { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "import json\n", "import os\n", "\n", "\n", "class DST():\n", " def __init__(self):\n", " self.state = json.load(open('dictionary.json'))\n", "\n", " def update(self, user_act=None):\n", " for intent, domain, slot, value in user_act:\n", " domain = domain.lower()\n", " intent = intent.lower()\n", " slot = slot.lower()\n", " \n", " if domain not in self.state['belief_state']:\n", " continue\n", "\n", " if intent == 'inform':\n", " if slot == 'none' or slot == '':\n", " continue\n", "\n", " domain_dic = self.state['belief_state'][domain]\n", "\n", " if slot in domain_dic:\n", " self.state['belief_state'][domain][slot] = value\n", "\n", " elif intent == 'request':\n", " if domain not in self.state['request_state']:\n", " self.state['request_state'][domain] = {}\n", " if slot not in self.state['request_state'][domain]:\n", " self.state['request_state'][domain][slot] = 0\n", "\n", " return self.state" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "dst = DST()\n", "user_act = [('inform', 'payment', 'type', 'credit card'), ('inform', 'product', 'name', 'iPhone')]\n", "state = dst.update(user_act)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'payment': {'type': 'credit card', 'amount': '', 'loyalty_card': ''}, 'delivery': {'type': '', 'address': '', 'time': ''}, 'product': {'name': 'iPhone', 'type': '', 'brand': '', 'price': '', 'quantity': '', 'quality': ''}}\n", "{}\n" ] } ], "source": [ "print(state['belief_state'])\n", "print(state['request_state'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from collections import defaultdict\n", "import copy\n", "import json\n", "from copy import deepcopy\n", "\n", "from convlab.policy.policy import Policy\n", "from convlab.util.multiwoz.dbquery import Database\n", "\n", "\n", "class SimpleRulePolicy(Policy):\n", " def __init__(self):\n", " Policy.__init__(self)\n", " self.db = Database()\n", "\n", " def predict(self, state):\n", " self.results = []\n", " system_action = defaultdict(list)\n", " user_action = defaultdict(list)\n", "\n", " for intent, domain, slot, value in state['user_action']:\n", " user_action[(domain.lower(), intent.lower())].append((slot.lower(), value))\n", "\n", " for user_act in user_action:\n", " self.update_system_action(user_act, user_action, state, system_action)\n", "\n", " # Reguła 3\n", " if any(True for slots in user_action.values() for (slot, _) in slots if slot in ['book stay', 'book day', 'book people']):\n", " if self.results:\n", " system_action = {('Booking', 'Book'): [[\"Ref\", self.results[0].get('Ref', 'N/A')]]}\n", "\n", " system_acts = [[intent, domain, slot, value] for (domain, intent), slots in system_action.items() for slot, value in slots]\n", " state['system_action'] = system_acts\n", " return system_acts\n", "\n", " def update_system_action(self, user_act, user_action, state, system_action):\n", " domain, intent = user_act\n", " constraints = [(slot, value) for slot, value in state['belief_state'][domain.lower()].items() if value != '']\n", " self.results = deepcopy(self.db.query(domain.lower(), constraints))\n", "\n", " # Reguła 1\n", " if intent == 'request':\n", " if len(self.results) == 0:\n", " system_action[(domain, 'NoOffer')] = []\n", " else:\n", " for slot in user_action[user_act]: \n", " if slot[0] in self.results[0]:\n", " system_action[(domain, 'Inform')].append([slot[0], self.results[0].get(slot[0], 'unknown')])\n", "\n", " # Reguła 2\n", " elif intent == 'inform':\n", " if len(self.results) == 0:\n", " system_action[(domain, 'NoOffer')] = []\n", " else:\n", " system_action[(domain, 'Inform')].append(['Choice', str(len(self.results))])\n", " choice = self.results[0]\n", "\n", " if domain in [\"product\"]:\n", " system_action[(domain, 'Recommend')].append(['Name', choice['name']])" ] } ], "metadata": { "kernelspec": { "display_name": "py38", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.16" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }