Generic_DialogSystem/system3.py

206 lines
7.7 KiB
Python

import spacy
import random
nlp = spacy.load("pl_core_news_md")
class DialogManager:
def __init__(self, nlu_module, dst_module):
self.nlu_module = nlu_module
self.dst_module = dst_module
def promotion(self):
r = random.randint(1, 4)
if r == 1:
promotion = "Mamy dzisiaj w promocji ser!"
elif r == 2:
promotion = "Aktualnie w promocji mamy jabłka!"
elif r == 2:
promotion = "Mleko w super cenie! Tylko dzisiaj!"
elif r == 2:
promotion = "Chipsy na imprezę w promocji!"
return promotion
def start_dialog(self):
self.dst_module.update_state([]) # Zerowanie stanu dialogowego
i = 0
while True:
user_input = input("Użytkownik: ")
# Wykorzystanie modułu NLU do ekstrakcji aktywności i slotów
acts = self.nlu_module.extract_acts_and_slots(user_input)
# Aktualizacja stanu dialogowego za pomocą modułu DST
self.dst_module.update_state(acts)
dialog_state = self.dst_module.get_state()
# Logika dialogu
if not acts:
r = random.randint(1, 4)
if r == 1:
response = "Przepraszam, nie rozumiem. W czym mogę Ci pomóc?"
elif r == 2:
response = "Czy mógłbyś powtórzyć?"
elif r == 3:
response = "Nie rozumiem. Mógłbyś powtórzyć?"
elif r == 4:
response = "Nie umiem na to odpowiedzieć."
elif "hello" in acts[0].act_type:
r = random.randint(1, 4)
if r == 1:
response = "Witaj! W czym mogę Ci pomóc?"
elif r == 2:
response = "Dzień dobry! W czym mogę Ci pomóc?"
elif r == 3:
response = "Witaj! W czym mogę służyć?"
elif r == 4:
response = "Dzień dobry! Czego potrzebujesz?"
elif "inform" in acts[0].act_type:
response = self.generate_response(dialog_state)
elif "bye" in acts[0].act_type:
r = random.randint(1, 4)
if r == 1:
response = "Dziękuję za rozmowę. Miłego dnia!"
elif r == 2:
response = "Dziękuję. Miłego dnia!"
elif r == 3:
response = "Miłego dnia i do zobaczenia!"
elif r == 4:
response = "Dziękuję i do zobaczenia!"
print("Agent:", response)
break
else:
response = "Nie rozumiem. Czym mogę Ci pomóc?"
print("Agent:", response)
i += 1
if i % 5 == 0:
print("Agent:", self.promotion())
def generate_response(self, dialog_state):
# Logika generowania odpowiedzi na podstawie stanu dialogowego
# Możesz dostosować tę logikę do swoich potrzeb
# Przykład: generowanie odpowiedzi na podstawie aktualnego stanu dialogowego
r = random.randint(1, 4)
if r == 1:
response = "Rozumiem, potrzebujesz"
elif r == 2:
response = "Znalazłem produkt"
elif r == 3:
response = "Posiadamy"
elif r == 4:
response = "Wybieram"
if "product type" in dialog_state and "product" in dialog_state:
product_type = dialog_state["product type"]
product = dialog_state["product"]
response += f" {product} z kategorii {product_type}"
elif "product type" in dialog_state:
product_type = dialog_state["product type"]
response += f" produkty z kategorii {product_type}"
else:
response += " informacji o twoich potrzebach"
r = random.randint(1, 4)
if r == 1:
response += ". Jak mogę Ci jeszcze pomóc?"
elif r == 2:
response += ". Co mogę jeszcze dla Ciebie zrobić?"
elif r == 3:
response += ". W czym mogę jeszcze pomóc?"
elif r == 4:
response += ". Czy potrzebujesz czegoś jeszcze?"
return response
class DialogStateTracker:
def __init__(self):
self.dialog_state = {}
def update_state(self, acts):
for act in acts:
if act.act_type == "hello":
self.dialog_state = {}
elif act.act_type == "bye":
self.dialog_state = {}
elif act.act_type == "inform":
slots = act.slots
for slot, value in slots.items():
self.dialog_state[slot] = value
def get_state(self):
return self.dialog_state
product_type_rules = {
"pieczywo": ["chleb", "bułka", "bulka", "bułki", "bulki", "rogaliki", "rogalika", "bagietka", "bagietkę", "bagietke", "bagietki"],
"owoce": ["jabłko", "jablko", "banana", "gruszkę", "gruszke", "pomarańczę","pomarancze"],
"warzywa": ["marchewkę", "marchewke", "ziemniak", "cebulę", "cebule", "pomidory", "pomidora"],
"mięso": ["kurczaka", "wołowinę", "wolowine", "wieprzowinę", "wieprzowine", "indyka"],
"produkty mrożone": ["lody", "frytki", "pierogi", "nuggetsy"],
"słodycze": ["czekoladę", "czekolade","czekolady", "ciastko", "lizaka", "gumę do żucia", "gume do zucia", "chipsy"],
"przyprawy": ["sól", "sol", "pieprz", "oregano", "cynamon"],
"napoje": ["wodę", "wode", "sok", "herbatę", "herbate", "kawę", "kawe", "energetyka"],
"napoje alkoholowe": ["piwo", "wino", "wódkę","wodke", "whisky"],
"higiena": ["pastę do zębów", "paste do zebow", "mydło", "mydlo", "szampon", "papier toaletowy"],
"chemia gospodarcza": ["płyn do naczyń", "plyn do naczyn", "proszek do prania", "odświeżacz powietrza", "odswiezacz powietrza"],
"inne": ["długopis", "baterie", "śrubokręt", "nożyczki"],
"nabiał": ["mleko", "ser", "śmietanę","smietane"]
}
class DialogAct:
def __init__(self, act_type, slots=None):
self.act_type = act_type
self.slots = slots if slots else {}
class NLU:
def __init__(self):
pass
def extract_acts_and_slots(self, text):
doc = nlp(text)
acts = []
for token in doc:
if token.lower_ == "cześć" or token.lower_ == "witaj":
acts.append(DialogAct("hello"))
elif token.lower_ == "widzenia" or token.lower_ == "żegnaj":
acts.append(DialogAct("bye"))
elif token.lower_ == "dziękuję":
acts.append(DialogAct("thankyou"))
elif token.lower_ == "proszę":
acts.append(DialogAct("request"))
elif token.lower_ == "powtórz":
acts.append(DialogAct("repeat"))
elif token.lower_ == "reset":
acts.append(DialogAct("restart"))
elif token.lower_ in ["tak", "oczywiście"]:
acts.append(DialogAct("affirm"))
elif token.lower_ in ["nie", "nie chcę"]:
acts.append(DialogAct("deny"))
elif token.pos_ == "NOUN":
print(token.lemma_)
product_type, product = self.find_product_type(token.lemma_)
if product_type and product:
act = DialogAct("inform", {"product type": product_type, "product": product})
acts.append(act)
return acts
def find_product_type(self, product):
for product_type, products in product_type_rules.items():
if product in products:
return product_type, product
return None, None
nlu = NLU()
dst = DialogStateTracker()
dm = DialogManager(nlu ,dst)
dm.start_dialog()