paranormal-or-skeptic/solution.py
2020-03-29 21:22:20 +02:00

120 lines
4.2 KiB
Python

import csv
from collections import defaultdict
import math
import pickle
import os
from pathlib import Path
def calc_class_logprob(expected_path): #zliczamy ogólne prawdopodobieństwo dla klasy (P(c))
paranoarmal_class_count = 0
skeptic_class_count = 0
with open(expected_path) as f:
for line in f:
if "P" in line:
paranoarmal_class_count +=1
elif "S" in line:
skeptic_class_count +=1
paranormal_class_prob = paranoarmal_class_count / (paranoarmal_class_count + skeptic_class_count)
skeptic_class_prob = skeptic_class_count / (paranoarmal_class_count + skeptic_class_count)
return math.log(paranormal_class_prob), math.log(skeptic_class_prob)
def calc_word_counts(in_path, expected_path):
with open(in_path) as in_file, open(expected_path) as exp_file:
word_counts = {'paranormal': defaultdict(int), 'skeptic': defaultdict(int)}
for in_line, exp_line in zip(in_file, exp_file):
class_ = exp_line.rstrip('\n').replace(" ", "")
text, timestamp = in_line.rstrip('\n').split('\t')
tokens = text.lower().split(' ')
for token in tokens:
if class_ == 'P':
word_counts['paranormal'][token] += 1
elif class_ == 'S':
word_counts['skeptic'][token] += 1
return word_counts
def calc_word_logprobs(word_counts):
total_skeptic = sum(word_counts['skeptic'].values()) + len(word_counts['skeptic'].keys())
total_paranormal = sum(word_counts['paranormal'].values())+ len(word_counts['paranormal'].keys())
word_logprobs = {'paranormal': {}, 'skeptic':{}}
for class_ in word_logprobs.keys():
for token, value in word_counts[class_].items():
if class_ == 'skeptic':
word_prob = (value + 1)/ total_skeptic
else:
word_prob = (value + 1)/total_paranormal
word_logprobs[class_][token] = math.log(word_prob)
return word_logprobs
paranormal_class_logprob, skeptic_class_logprob = calc_class_logprob("train/expected.tsv")
word_counts = calc_word_counts('train/in.tsv','train/expected.tsv')
word_logprobs = calc_word_logprobs(word_counts)
print(word_logprobs['skeptic']["hair."]) #-12.166205308815476
#trzeba teraz 1. pobrac post 2. podzielić go na termy 3 policzyć prawdopodibeństwo każdego termu 4. dodać je do siebie 5 porwonac paranormal ze sceptic
def get_test_posts(path):
posts = []
with open(path) as f:
for line in f:
text, timestamp = line.rstrip('\n').split('\t')
posts.append(text)
return posts
def predict_post_class(posts, sprob, pprob, word_logprobs):
out_classes = []
for post in posts:
total_s_prob = sprob
total_p_prob = pprob
tokens = post.lower().split(' ')
for token in tokens:
#dlasceptic
if (token in word_logprobs['skeptic'].keys()):
sceptic_prob = word_logprobs['skeptic'][token]
else:
sceptic_prob = 0
#dlaparanormal
if (token in word_logprobs['paranormal'].keys()):
paranormal_prob = word_logprobs['paranormal'][token]
else:
paranormal_prob = 0
total_s_prob += sceptic_prob
total_p_prob += paranormal_prob
#print(total_p_prob)
#print(total_s_prob)
if total_p_prob > total_s_prob:
out_classes.append('P')
else:
out_classes.append('S')
return out_classes
def predict_posts(path):
posts = get_test_posts(path+'/in.tsv')
classes = predict_post_class(posts, skeptic_class_logprob, paranormal_class_logprob, word_logprobs)
with open(path+"/out.tsv", 'wt') as tsvfile:
tsv_writer = csv.writer(tsvfile, delimiter='\t')
for i in classes:
tsv_writer.writerow(i)
predict_posts("dev-0")
predict_posts("test-A")
with open("dev-0/out.tsv") as out_file, open("dev-0/expected.tsv") as exp_file:
counter = 0
positive = 0
for out_line, exp_line in zip(out_file, exp_file):
counter+=1
if " "+out_line == exp_line:
positive += 1
print(positive/counter)