sport-text-classification-b.../classifier.py
2021-04-19 20:00:40 +02:00

51 lines
1.4 KiB
Python

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
stopwords = []
# stopwords source - https://github.com/bieli/stopwords/blob/master/polish.stopwords.txt
with open('stopwords') as f:
stopwords = [line.rstrip() for line in f]
classifier = MultinomialNB()
vectorizer = TfidfVectorizer()
def preprocess(doc):
doc = doc.lower().split(' ')
doc = list(filter(lambda word: (word not in stopwords) and (word != ''), doc))
doc = ' '.join(doc)
return doc
def train():
with open('train/train.tsv') as f:
docs = [line.rstrip() for line in f]
docs_preprocessed = []
y = []
for doc in docs:
y_with_doc = doc.split('\t')
y.append(y_with_doc[0])
doc = y_with_doc[1]
docs_preprocessed.append(preprocess(doc))
y = [int(value) for value in y]
x = vectorizer.fit_transform(docs_preprocessed)
classifier.fit(x, y)
def classify(path):
with open(path + 'in.tsv') as f:
docs = [line.rstrip() for line in f]
docs_preprocessed = []
for doc in docs:
docs_preprocessed.append(preprocess(doc))
test_x = vectorizer.transform(docs)
predictions = classifier.predict(test_x)
with open(path + 'out.tsv', 'w') as file:
for prediction in predictions:
file.write("%i\n" % prediction)
train()
classify('dev-0/')
classify('test-A/')