retroc2/mian.py

43 lines
1.4 KiB
Python
Raw Normal View History

2021-04-27 20:51:28 +02:00
import csv
2021-04-27 19:36:55 +02:00
import gensim as gensim
import smart_open
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LinearRegression
from stop_words import get_stop_words
from sklearn.cluster import KMeans
from gensim.models.doc2vec import Doc2Vec
import os
import pandas as pd
def read_train_file(inDirectory):
colnames = ['start_date', 'end_date', 'title', 'sort_title', 'data']
df_train = pd.read_csv(inDirectory, sep="\t", names=colnames)
2021-04-27 20:51:28 +02:00
return df_train[:tain_set]
2021-04-27 19:36:55 +02:00
def read_evaluate_file(inDirectory):
colnames = ['data']
2021-04-27 20:51:28 +02:00
df_train = pd.read_csv(inDirectory, sep="\t", names=colnames, quoting=csv.QUOTE_NONE, error_bad_lines=False)
return df_train
2021-04-27 19:36:55 +02:00
def train_date_mean(df):
date_mean = (df['start_date'] + df['end_date']) / 2
return date_mean
2021-04-27 20:51:28 +02:00
tain_set = 50000
2021-04-27 19:36:55 +02:00
df = read_train_file('train/train.tsv')
2021-04-27 20:51:28 +02:00
date_mean_df = train_date_mean(df)
2021-04-27 19:36:55 +02:00
vectorizer = TfidfVectorizer(stop_words=get_stop_words('polish'))
train_vectorized_corpus = vectorizer.fit_transform(df['data'])
reg = LinearRegression().fit(train_vectorized_corpus, date_mean_df)
df_evaluate = read_evaluate_file('dev-0/in.tsv')
evaluate_vectorized_corpus = vectorizer.transform(df_evaluate['data'])
evaluate = reg.predict(evaluate_vectorized_corpus)
with open("dev-0/out.tsv", 'w') as file:
for e in evaluate:
2021-04-27 20:51:28 +02:00
file.write("%i\n" % e)
os.system("./geval -t dev-0")