import gensim as gensim import smart_open from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LinearRegression from stop_words import get_stop_words from sklearn.cluster import KMeans from gensim.models.doc2vec import Doc2Vec import os import pandas as pd def read_train_file(inDirectory): colnames = ['start_date', 'end_date', 'title', 'sort_title', 'data'] df_train = pd.read_csv(inDirectory, sep="\t", names=colnames) return df_train[:5000] def read_evaluate_file(inDirectory): colnames = ['data'] df_train = pd.read_csv(inDirectory, sep="\t", names=colnames) return df_train[:5000] def train_date_mean(df): date_mean = (df['start_date'] + df['end_date']) / 2 return date_mean def preper_data(df): document_list = list() for line in df: tokens = gensim.utils.simple_preprocess(line, min_len=2, max_len=15) filtered_sentence = [] for word in tokens: if word not in get_stop_words('polish'): filtered_sentence.append(word) document_list.append(filtered_sentence) return document_list df = read_train_file('train/train.tsv') date_mean_df = train_date_mean(df)[:5000] vectorizer = TfidfVectorizer(stop_words=get_stop_words('polish')) train_vectorized_corpus = vectorizer.fit_transform(df['data']) reg = LinearRegression().fit(train_vectorized_corpus, date_mean_df) df_evaluate = read_evaluate_file('dev-0/in.tsv') evaluate_vectorized_corpus = vectorizer.transform(df_evaluate['data']) evaluate = reg.predict(evaluate_vectorized_corpus) with open("dev-0/out.tsv", 'w') as file: for e in evaluate: file.write("%i\n" % e)