140 lines
3.1 KiB
Plaintext
140 lines
3.1 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 46,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import sklearn\n",
|
||
|
"from sklearn.pipeline import make_pipeline\n",
|
||
|
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
||
|
"import numpy as np\n",
|
||
|
"from sklearn.naive_bayes import MultinomialNB\n",
|
||
|
"from sklearn.preprocessing import LabelEncoder "
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 47,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def getInput(path):\n",
|
||
|
" with open(path,encoding='utf-8') as f:\n",
|
||
|
" return f.readlines()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 48,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"/c/Users/mkoci/Desktop/naiwny_bayes\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"!pwd"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 49,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"train_in=getInput('./train/in.tsv')\n",
|
||
|
"train_expected=getInput('./train/expected.tsv')\n",
|
||
|
"test_in=getInput('./test-A/in.tsv')\n",
|
||
|
"dev_in=getInput('./dev-0/in.tsv')\n",
|
||
|
"dev_expected=getInput('./dev-0/expected.tsv')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 50,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"pipeline = make_pipeline(TfidfVectorizer(),MultinomialNB())\n",
|
||
|
"encTransform = LabelEncoder().fit_transform(train_expected)\n",
|
||
|
"model = pipeline.fit(train_in, encTransform)\n",
|
||
|
"dev_predicted = model.predict(dev_in)\n",
|
||
|
"test_predicted = model.predict(test_in)\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 54,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"with open('./dev-0/out.tsv', \"w\") as result:\n",
|
||
|
" for out in dev_predicted:\n",
|
||
|
" result.write(str(out) + '\\n')\n",
|
||
|
"with open('./test-A/out.tsv', \"w\") as result:\n",
|
||
|
" for out in test_predicted:\n",
|
||
|
" result.write(str(out) + '\\n') "
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 55,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"[NbConvertApp] Converting notebook Naiwny_bayes.ipynb to script\n",
|
||
|
"[NbConvertApp] Writing 1337 bytes to Naiwny_bayes.py\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"!jupyter nbconvert --to script Naiwny_bayes.ipynb"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.9.1"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 4
|
||
|
}
|