paranormal-or-skeptic-ISI-p.../Naiwny_bayes.py

77 lines
1.3 KiB
Python
Raw Normal View History

2021-05-09 18:26:42 +02:00
#!/usr/bin/env python
# coding: utf-8
# In[46]:
import sklearn
from sklearn.pipeline import make_pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
from sklearn.naive_bayes import MultinomialNB
from sklearn.preprocessing import LabelEncoder
# In[47]:
def getInput(path):
with open(path,encoding='utf-8') as f:
return f.readlines()
# In[48]:
get_ipython().system('pwd')
# In[49]:
train_in=getInput('./train/in.tsv')
train_expected=getInput('./train/expected.tsv')
test_in=getInput('./test-A/in.tsv')
dev_in=getInput('./dev-0/in.tsv')
dev_expected=getInput('./dev-0/expected.tsv')
# In[50]:
pipeline = make_pipeline(TfidfVectorizer(),MultinomialNB())
encTransform = LabelEncoder().fit_transform(train_expected)
model = pipeline.fit(train_in, encTransform)
dev_predicted = model.predict(dev_in)
test_predicted = model.predict(test_in)
# In[ ]:
# In[54]:
with open('./dev-0/out.tsv', "w") as result:
for out in dev_predicted:
result.write(str(out) + '\n')
with open('./test-A/out.tsv', "w") as result:
for out in test_predicted:
result.write(str(out) + '\n')
# In[55]:
get_ipython().system('jupyter nbconvert --to script Naiwny_bayes.ipynb')
# In[ ]: