LSR/env/lib/python3.6/site-packages/pandas/compat/numpy/function.py

406 lines
13 KiB
Python
Raw Normal View History

2020-06-04 17:24:47 +02:00
"""
For compatibility with numpy libraries, pandas functions or
methods have to accept '*args' and '**kwargs' parameters to
accommodate numpy arguments that are not actually used or
respected in the pandas implementation.
To ensure that users do not abuse these parameters, validation
is performed in 'validators.py' to make sure that any extra
parameters passed correspond ONLY to those in the numpy signature.
Part of that validation includes whether or not the user attempted
to pass in non-default values for these extraneous parameters. As we
want to discourage users from relying on these parameters when calling
the pandas implementation, we want them only to pass in the default values
for these parameters.
This module provides a set of commonly used default arguments for functions
and methods that are spread throughout the codebase. This module will make it
easier to adjust to future upstream changes in the analogous numpy signatures.
"""
from collections import OrderedDict
from distutils.version import LooseVersion
from typing import Any, Dict, Optional, Union
from numpy import __version__ as _np_version, ndarray
from pandas._libs.lib import is_bool, is_integer
from pandas.errors import UnsupportedFunctionCall
from pandas.util._validators import (
validate_args,
validate_args_and_kwargs,
validate_kwargs,
)
class CompatValidator:
def __init__(self, defaults, fname=None, method=None, max_fname_arg_count=None):
self.fname = fname
self.method = method
self.defaults = defaults
self.max_fname_arg_count = max_fname_arg_count
def __call__(self, args, kwargs, fname=None, max_fname_arg_count=None, method=None):
if args or kwargs:
fname = self.fname if fname is None else fname
max_fname_arg_count = (
self.max_fname_arg_count
if max_fname_arg_count is None
else max_fname_arg_count
)
method = self.method if method is None else method
if method == "args":
validate_args(fname, args, max_fname_arg_count, self.defaults)
elif method == "kwargs":
validate_kwargs(fname, kwargs, self.defaults)
elif method == "both":
validate_args_and_kwargs(
fname, args, kwargs, max_fname_arg_count, self.defaults
)
else:
raise ValueError(f"invalid validation method '{method}'")
ARGMINMAX_DEFAULTS = dict(out=None)
validate_argmin = CompatValidator(
ARGMINMAX_DEFAULTS, fname="argmin", method="both", max_fname_arg_count=1
)
validate_argmax = CompatValidator(
ARGMINMAX_DEFAULTS, fname="argmax", method="both", max_fname_arg_count=1
)
def process_skipna(skipna, args):
if isinstance(skipna, ndarray) or skipna is None:
args = (skipna,) + args
skipna = True
return skipna, args
def validate_argmin_with_skipna(skipna, args, kwargs):
"""
If 'Series.argmin' is called via the 'numpy' library,
the third parameter in its signature is 'out', which
takes either an ndarray or 'None', so check if the
'skipna' parameter is either an instance of ndarray or
is None, since 'skipna' itself should be a boolean
"""
skipna, args = process_skipna(skipna, args)
validate_argmin(args, kwargs)
return skipna
def validate_argmax_with_skipna(skipna, args, kwargs):
"""
If 'Series.argmax' is called via the 'numpy' library,
the third parameter in its signature is 'out', which
takes either an ndarray or 'None', so check if the
'skipna' parameter is either an instance of ndarray or
is None, since 'skipna' itself should be a boolean
"""
skipna, args = process_skipna(skipna, args)
validate_argmax(args, kwargs)
return skipna
ARGSORT_DEFAULTS: "OrderedDict[str, Optional[Union[int, str]]]" = OrderedDict()
ARGSORT_DEFAULTS["axis"] = -1
ARGSORT_DEFAULTS["kind"] = "quicksort"
ARGSORT_DEFAULTS["order"] = None
if LooseVersion(_np_version) >= LooseVersion("1.17.0"):
# GH-26361. NumPy added radix sort and changed default to None.
ARGSORT_DEFAULTS["kind"] = None
validate_argsort = CompatValidator(
ARGSORT_DEFAULTS, fname="argsort", max_fname_arg_count=0, method="both"
)
# two different signatures of argsort, this second validation
# for when the `kind` param is supported
ARGSORT_DEFAULTS_KIND: "OrderedDict[str, Optional[int]]" = OrderedDict()
ARGSORT_DEFAULTS_KIND["axis"] = -1
ARGSORT_DEFAULTS_KIND["order"] = None
validate_argsort_kind = CompatValidator(
ARGSORT_DEFAULTS_KIND, fname="argsort", max_fname_arg_count=0, method="both"
)
def validate_argsort_with_ascending(ascending, args, kwargs):
"""
If 'Categorical.argsort' is called via the 'numpy' library, the
first parameter in its signature is 'axis', which takes either
an integer or 'None', so check if the 'ascending' parameter has
either integer type or is None, since 'ascending' itself should
be a boolean
"""
if is_integer(ascending) or ascending is None:
args = (ascending,) + args
ascending = True
validate_argsort_kind(args, kwargs, max_fname_arg_count=3)
return ascending
CLIP_DEFAULTS = dict(out=None) # type Dict[str, Any]
validate_clip = CompatValidator(
CLIP_DEFAULTS, fname="clip", method="both", max_fname_arg_count=3
)
def validate_clip_with_axis(axis, args, kwargs):
"""
If 'NDFrame.clip' is called via the numpy library, the third
parameter in its signature is 'out', which can takes an ndarray,
so check if the 'axis' parameter is an instance of ndarray, since
'axis' itself should either be an integer or None
"""
if isinstance(axis, ndarray):
args = (axis,) + args
axis = None
validate_clip(args, kwargs)
return axis
CUM_FUNC_DEFAULTS: "OrderedDict[str, Any]" = OrderedDict()
CUM_FUNC_DEFAULTS["dtype"] = None
CUM_FUNC_DEFAULTS["out"] = None
validate_cum_func = CompatValidator(
CUM_FUNC_DEFAULTS, method="both", max_fname_arg_count=1
)
validate_cumsum = CompatValidator(
CUM_FUNC_DEFAULTS, fname="cumsum", method="both", max_fname_arg_count=1
)
def validate_cum_func_with_skipna(skipna, args, kwargs, name):
"""
If this function is called via the 'numpy' library, the third
parameter in its signature is 'dtype', which takes either a
'numpy' dtype or 'None', so check if the 'skipna' parameter is
a boolean or not
"""
if not is_bool(skipna):
args = (skipna,) + args
skipna = True
validate_cum_func(args, kwargs, fname=name)
return skipna
ALLANY_DEFAULTS: "OrderedDict[str, Optional[bool]]" = OrderedDict()
ALLANY_DEFAULTS["dtype"] = None
ALLANY_DEFAULTS["out"] = None
ALLANY_DEFAULTS["keepdims"] = False
validate_all = CompatValidator(
ALLANY_DEFAULTS, fname="all", method="both", max_fname_arg_count=1
)
validate_any = CompatValidator(
ALLANY_DEFAULTS, fname="any", method="both", max_fname_arg_count=1
)
LOGICAL_FUNC_DEFAULTS = dict(out=None, keepdims=False)
validate_logical_func = CompatValidator(LOGICAL_FUNC_DEFAULTS, method="kwargs")
MINMAX_DEFAULTS = dict(out=None, keepdims=False)
validate_min = CompatValidator(
MINMAX_DEFAULTS, fname="min", method="both", max_fname_arg_count=1
)
validate_max = CompatValidator(
MINMAX_DEFAULTS, fname="max", method="both", max_fname_arg_count=1
)
RESHAPE_DEFAULTS: Dict[str, str] = dict(order="C")
validate_reshape = CompatValidator(
RESHAPE_DEFAULTS, fname="reshape", method="both", max_fname_arg_count=1
)
REPEAT_DEFAULTS: Dict[str, Any] = dict(axis=None)
validate_repeat = CompatValidator(
REPEAT_DEFAULTS, fname="repeat", method="both", max_fname_arg_count=1
)
ROUND_DEFAULTS: Dict[str, Any] = dict(out=None)
validate_round = CompatValidator(
ROUND_DEFAULTS, fname="round", method="both", max_fname_arg_count=1
)
SORT_DEFAULTS: "OrderedDict[str, Optional[Union[int, str]]]" = OrderedDict()
SORT_DEFAULTS["axis"] = -1
SORT_DEFAULTS["kind"] = "quicksort"
SORT_DEFAULTS["order"] = None
validate_sort = CompatValidator(SORT_DEFAULTS, fname="sort", method="kwargs")
STAT_FUNC_DEFAULTS: "OrderedDict[str, Optional[Any]]" = OrderedDict()
STAT_FUNC_DEFAULTS["dtype"] = None
STAT_FUNC_DEFAULTS["out"] = None
PROD_DEFAULTS = SUM_DEFAULTS = STAT_FUNC_DEFAULTS.copy()
SUM_DEFAULTS["keepdims"] = False
SUM_DEFAULTS["initial"] = None
MEDIAN_DEFAULTS = STAT_FUNC_DEFAULTS.copy()
MEDIAN_DEFAULTS["overwrite_input"] = False
MEDIAN_DEFAULTS["keepdims"] = False
STAT_FUNC_DEFAULTS["keepdims"] = False
validate_stat_func = CompatValidator(STAT_FUNC_DEFAULTS, method="kwargs")
validate_sum = CompatValidator(
SUM_DEFAULTS, fname="sum", method="both", max_fname_arg_count=1
)
validate_prod = CompatValidator(
PROD_DEFAULTS, fname="prod", method="both", max_fname_arg_count=1
)
validate_mean = CompatValidator(
STAT_FUNC_DEFAULTS, fname="mean", method="both", max_fname_arg_count=1
)
validate_median = CompatValidator(
MEDIAN_DEFAULTS, fname="median", method="both", max_fname_arg_count=1
)
STAT_DDOF_FUNC_DEFAULTS: "OrderedDict[str, Optional[bool]]" = OrderedDict()
STAT_DDOF_FUNC_DEFAULTS["dtype"] = None
STAT_DDOF_FUNC_DEFAULTS["out"] = None
STAT_DDOF_FUNC_DEFAULTS["keepdims"] = False
validate_stat_ddof_func = CompatValidator(STAT_DDOF_FUNC_DEFAULTS, method="kwargs")
TAKE_DEFAULTS: "OrderedDict[str, Optional[str]]" = OrderedDict()
TAKE_DEFAULTS["out"] = None
TAKE_DEFAULTS["mode"] = "raise"
validate_take = CompatValidator(TAKE_DEFAULTS, fname="take", method="kwargs")
def validate_take_with_convert(convert, args, kwargs):
"""
If this function is called via the 'numpy' library, the third
parameter in its signature is 'axis', which takes either an
ndarray or 'None', so check if the 'convert' parameter is either
an instance of ndarray or is None
"""
if isinstance(convert, ndarray) or convert is None:
args = (convert,) + args
convert = True
validate_take(args, kwargs, max_fname_arg_count=3, method="both")
return convert
TRANSPOSE_DEFAULTS = dict(axes=None)
validate_transpose = CompatValidator(
TRANSPOSE_DEFAULTS, fname="transpose", method="both", max_fname_arg_count=0
)
def validate_window_func(name, args, kwargs):
numpy_args = ("axis", "dtype", "out")
msg = (
f"numpy operations are not valid with window objects. "
f"Use .{name}() directly instead "
)
if len(args) > 0:
raise UnsupportedFunctionCall(msg)
for arg in numpy_args:
if arg in kwargs:
raise UnsupportedFunctionCall(msg)
def validate_rolling_func(name, args, kwargs):
numpy_args = ("axis", "dtype", "out")
msg = (
f"numpy operations are not valid with window objects. "
f"Use .rolling(...).{name}() instead "
)
if len(args) > 0:
raise UnsupportedFunctionCall(msg)
for arg in numpy_args:
if arg in kwargs:
raise UnsupportedFunctionCall(msg)
def validate_expanding_func(name, args, kwargs):
numpy_args = ("axis", "dtype", "out")
msg = (
f"numpy operations are not valid with window objects. "
f"Use .expanding(...).{name}() instead "
)
if len(args) > 0:
raise UnsupportedFunctionCall(msg)
for arg in numpy_args:
if arg in kwargs:
raise UnsupportedFunctionCall(msg)
def validate_groupby_func(name, args, kwargs, allowed=None):
"""
'args' and 'kwargs' should be empty, except for allowed
kwargs because all of
their necessary parameters are explicitly listed in
the function signature
"""
if allowed is None:
allowed = []
kwargs = set(kwargs) - set(allowed)
if len(args) + len(kwargs) > 0:
raise UnsupportedFunctionCall(
f"numpy operations are not valid with "
f"groupby. Use .groupby(...).{name}() "
f"instead"
)
RESAMPLER_NUMPY_OPS = ("min", "max", "sum", "prod", "mean", "std", "var")
def validate_resampler_func(method, args, kwargs):
"""
'args' and 'kwargs' should be empty because all of
their necessary parameters are explicitly listed in
the function signature
"""
if len(args) + len(kwargs) > 0:
if method in RESAMPLER_NUMPY_OPS:
raise UnsupportedFunctionCall(
f"numpy operations are not "
f"valid with resample. Use "
f".resample(...).{method}() instead"
)
else:
raise TypeError("too many arguments passed in")
def validate_minmax_axis(axis):
"""
Ensure that the axis argument passed to min, max, argmin, or argmax is
zero or None, as otherwise it will be incorrectly ignored.
Parameters
----------
axis : int or None
Raises
------
ValueError
"""
ndim = 1 # hard-coded for Index
if axis is None:
return
if axis >= ndim or (axis < 0 and ndim + axis < 0):
raise ValueError(f"`axis` must be fewer than the number of dimensions ({ndim})")