LSR/env/lib/python3.6/site-packages/pandas/tests/base/test_ops.py

900 lines
33 KiB
Python
Raw Normal View History

2020-06-04 17:24:47 +02:00
from datetime import datetime, timedelta
from io import StringIO
import sys
import numpy as np
import pytest
from pandas._libs.tslib import iNaT
from pandas.compat import PYPY
from pandas.compat.numpy import np_array_datetime64_compat
from pandas.core.dtypes.common import (
is_datetime64_dtype,
is_datetime64tz_dtype,
is_object_dtype,
needs_i8_conversion,
)
import pandas as pd
from pandas import (
DataFrame,
DatetimeIndex,
Index,
Interval,
IntervalIndex,
PeriodIndex,
Series,
Timedelta,
TimedeltaIndex,
Timestamp,
)
import pandas._testing as tm
from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin
class Ops:
def _allow_na_ops(self, obj):
"""Whether to skip test cases including NaN"""
if (isinstance(obj, Index) and obj.is_boolean()) or not obj._can_hold_na:
# don't test boolean / integer dtypes
return False
return True
def setup_method(self, method):
self.bool_index = tm.makeBoolIndex(10, name="a")
self.int_index = tm.makeIntIndex(10, name="a")
self.float_index = tm.makeFloatIndex(10, name="a")
self.dt_index = tm.makeDateIndex(10, name="a")
self.dt_tz_index = tm.makeDateIndex(10, name="a").tz_localize(tz="US/Eastern")
self.period_index = tm.makePeriodIndex(10, name="a")
self.string_index = tm.makeStringIndex(10, name="a")
self.unicode_index = tm.makeUnicodeIndex(10, name="a")
arr = np.random.randn(10)
self.bool_series = Series(arr, index=self.bool_index, name="a")
self.int_series = Series(arr, index=self.int_index, name="a")
self.float_series = Series(arr, index=self.float_index, name="a")
self.dt_series = Series(arr, index=self.dt_index, name="a")
self.dt_tz_series = self.dt_tz_index.to_series()
self.period_series = Series(arr, index=self.period_index, name="a")
self.string_series = Series(arr, index=self.string_index, name="a")
self.unicode_series = Series(arr, index=self.unicode_index, name="a")
types = ["bool", "int", "float", "dt", "dt_tz", "period", "string", "unicode"]
self.indexes = [getattr(self, f"{t}_index") for t in types]
self.series = [getattr(self, f"{t}_series") for t in types]
# To test narrow dtypes, we use narrower *data* elements, not *index* elements
index = self.int_index
self.float32_series = Series(arr.astype(np.float32), index=index, name="a")
arr_int = np.random.choice(10, size=10, replace=False)
self.int8_series = Series(arr_int.astype(np.int8), index=index, name="a")
self.int16_series = Series(arr_int.astype(np.int16), index=index, name="a")
self.int32_series = Series(arr_int.astype(np.int32), index=index, name="a")
self.uint8_series = Series(arr_int.astype(np.uint8), index=index, name="a")
self.uint16_series = Series(arr_int.astype(np.uint16), index=index, name="a")
self.uint32_series = Series(arr_int.astype(np.uint32), index=index, name="a")
nrw_types = ["float32", "int8", "int16", "int32", "uint8", "uint16", "uint32"]
self.narrow_series = [getattr(self, f"{t}_series") for t in nrw_types]
self.objs = self.indexes + self.series + self.narrow_series
def check_ops_properties(self, props, filter=None, ignore_failures=False):
for op in props:
for o in self.is_valid_objs:
# if a filter, skip if it doesn't match
if filter is not None:
filt = o.index if isinstance(o, Series) else o
if not filter(filt):
continue
try:
if isinstance(o, Series):
expected = Series(getattr(o.index, op), index=o.index, name="a")
else:
expected = getattr(o, op)
except (AttributeError):
if ignore_failures:
continue
result = getattr(o, op)
# these could be series, arrays or scalars
if isinstance(result, Series) and isinstance(expected, Series):
tm.assert_series_equal(result, expected)
elif isinstance(result, Index) and isinstance(expected, Index):
tm.assert_index_equal(result, expected)
elif isinstance(result, np.ndarray) and isinstance(
expected, np.ndarray
):
tm.assert_numpy_array_equal(result, expected)
else:
assert result == expected
# freq raises AttributeError on an Int64Index because its not
# defined we mostly care about Series here anyhow
if not ignore_failures:
for o in self.not_valid_objs:
# an object that is datetimelike will raise a TypeError,
# otherwise an AttributeError
err = AttributeError
if issubclass(type(o), DatetimeIndexOpsMixin):
err = TypeError
with pytest.raises(err):
getattr(o, op)
@pytest.mark.parametrize("klass", [Series, DataFrame])
def test_binary_ops_docs(self, klass):
op_map = {
"add": "+",
"sub": "-",
"mul": "*",
"mod": "%",
"pow": "**",
"truediv": "/",
"floordiv": "//",
}
for op_name in op_map:
operand1 = klass.__name__.lower()
operand2 = "other"
op = op_map[op_name]
expected_str = " ".join([operand1, op, operand2])
assert expected_str in getattr(klass, op_name).__doc__
# reverse version of the binary ops
expected_str = " ".join([operand2, op, operand1])
assert expected_str in getattr(klass, "r" + op_name).__doc__
class TestTranspose(Ops):
errmsg = "the 'axes' parameter is not supported"
def test_transpose(self):
for obj in self.objs:
tm.assert_equal(obj.transpose(), obj)
def test_transpose_non_default_axes(self):
for obj in self.objs:
with pytest.raises(ValueError, match=self.errmsg):
obj.transpose(1)
with pytest.raises(ValueError, match=self.errmsg):
obj.transpose(axes=1)
def test_numpy_transpose(self):
for obj in self.objs:
tm.assert_equal(np.transpose(obj), obj)
with pytest.raises(ValueError, match=self.errmsg):
np.transpose(obj, axes=1)
class TestIndexOps(Ops):
def setup_method(self, method):
super().setup_method(method)
self.is_valid_objs = self.objs
self.not_valid_objs = []
def test_none_comparison(self):
# bug brought up by #1079
# changed from TypeError in 0.17.0
for o in self.is_valid_objs:
if isinstance(o, Series):
o[0] = np.nan
# noinspection PyComparisonWithNone
result = o == None # noqa
assert not result.iat[0]
assert not result.iat[1]
# noinspection PyComparisonWithNone
result = o != None # noqa
assert result.iat[0]
assert result.iat[1]
result = None == o # noqa
assert not result.iat[0]
assert not result.iat[1]
result = None != o # noqa
assert result.iat[0]
assert result.iat[1]
if is_datetime64_dtype(o) or is_datetime64tz_dtype(o):
# Following DatetimeIndex (and Timestamp) convention,
# inequality comparisons with Series[datetime64] raise
with pytest.raises(TypeError):
None > o
with pytest.raises(TypeError):
o > None
else:
result = None > o
assert not result.iat[0]
assert not result.iat[1]
result = o < None
assert not result.iat[0]
assert not result.iat[1]
def test_ndarray_compat_properties(self):
for o in self.objs:
# Check that we work.
for p in ["shape", "dtype", "T", "nbytes"]:
assert getattr(o, p, None) is not None
# deprecated properties
for p in ["flags", "strides", "itemsize", "base", "data"]:
assert not hasattr(o, p)
with pytest.raises(ValueError):
o.item() # len > 1
assert o.ndim == 1
assert o.size == len(o)
assert Index([1]).item() == 1
assert Series([1]).item() == 1
def test_value_counts_unique_nunique(self):
for orig in self.objs:
o = orig.copy()
klass = type(o)
values = o._values
if isinstance(values, Index):
# reset name not to affect latter process
values.name = None
# create repeated values, 'n'th element is repeated by n+1 times
# skip boolean, because it only has 2 values at most
if isinstance(o, Index) and o.is_boolean():
continue
elif isinstance(o, Index):
expected_index = Index(o[::-1])
expected_index.name = None
o = o.repeat(range(1, len(o) + 1))
o.name = "a"
else:
expected_index = Index(values[::-1])
idx = o.index.repeat(range(1, len(o) + 1))
# take-based repeat
indices = np.repeat(np.arange(len(o)), range(1, len(o) + 1))
rep = values.take(indices)
o = klass(rep, index=idx, name="a")
# check values has the same dtype as the original
assert o.dtype == orig.dtype
expected_s = Series(
range(10, 0, -1), index=expected_index, dtype="int64", name="a"
)
result = o.value_counts()
tm.assert_series_equal(result, expected_s)
assert result.index.name is None
assert result.name == "a"
result = o.unique()
if isinstance(o, Index):
assert isinstance(result, type(o))
tm.assert_index_equal(result, orig)
assert result.dtype == orig.dtype
elif is_datetime64tz_dtype(o):
# datetimetz Series returns array of Timestamp
assert result[0] == orig[0]
for r in result:
assert isinstance(r, Timestamp)
tm.assert_numpy_array_equal(
result.astype(object), orig._values.astype(object)
)
else:
tm.assert_numpy_array_equal(result, orig.values)
assert result.dtype == orig.dtype
assert o.nunique() == len(np.unique(o.values))
@pytest.mark.parametrize("null_obj", [np.nan, None])
def test_value_counts_unique_nunique_null(self, null_obj):
for orig in self.objs:
o = orig.copy()
klass = type(o)
values = o._ndarray_values
if not self._allow_na_ops(o):
continue
# special assign to the numpy array
if is_datetime64tz_dtype(o):
if isinstance(o, DatetimeIndex):
v = o.asi8
v[0:2] = iNaT
values = o._shallow_copy(v)
else:
o = o.copy()
o[0:2] = pd.NaT
values = o._values
elif needs_i8_conversion(o):
values[0:2] = iNaT
values = o._shallow_copy(values)
else:
values[0:2] = null_obj
# check values has the same dtype as the original
assert values.dtype == o.dtype
# create repeated values, 'n'th element is repeated by n+1
# times
if isinstance(o, (DatetimeIndex, PeriodIndex)):
expected_index = o.copy()
expected_index.name = None
# attach name to klass
o = klass(values.repeat(range(1, len(o) + 1)))
o.name = "a"
else:
if isinstance(o, DatetimeIndex):
expected_index = orig._values._shallow_copy(values)
else:
expected_index = Index(values)
expected_index.name = None
o = o.repeat(range(1, len(o) + 1))
o.name = "a"
# check values has the same dtype as the original
assert o.dtype == orig.dtype
# check values correctly have NaN
nanloc = np.zeros(len(o), dtype=np.bool)
nanloc[:3] = True
if isinstance(o, Index):
tm.assert_numpy_array_equal(pd.isna(o), nanloc)
else:
exp = Series(nanloc, o.index, name="a")
tm.assert_series_equal(pd.isna(o), exp)
expected_s_na = Series(
list(range(10, 2, -1)) + [3],
index=expected_index[9:0:-1],
dtype="int64",
name="a",
)
expected_s = Series(
list(range(10, 2, -1)),
index=expected_index[9:1:-1],
dtype="int64",
name="a",
)
result_s_na = o.value_counts(dropna=False)
tm.assert_series_equal(result_s_na, expected_s_na)
assert result_s_na.index.name is None
assert result_s_na.name == "a"
result_s = o.value_counts()
tm.assert_series_equal(o.value_counts(), expected_s)
assert result_s.index.name is None
assert result_s.name == "a"
result = o.unique()
if isinstance(o, Index):
tm.assert_index_equal(result, Index(values[1:], name="a"))
elif is_datetime64tz_dtype(o):
# unable to compare NaT / nan
tm.assert_extension_array_equal(result[1:], values[2:])
assert result[0] is pd.NaT
else:
tm.assert_numpy_array_equal(result[1:], values[2:])
assert pd.isna(result[0])
assert result.dtype == orig.dtype
assert o.nunique() == 8
assert o.nunique(dropna=False) == 9
def test_value_counts_inferred(self, index_or_series):
klass = index_or_series
s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"]
s = klass(s_values)
expected = Series([4, 3, 2, 1], index=["b", "a", "d", "c"])
tm.assert_series_equal(s.value_counts(), expected)
if isinstance(s, Index):
exp = Index(np.unique(np.array(s_values, dtype=np.object_)))
tm.assert_index_equal(s.unique(), exp)
else:
exp = np.unique(np.array(s_values, dtype=np.object_))
tm.assert_numpy_array_equal(s.unique(), exp)
assert s.nunique() == 4
# don't sort, have to sort after the fact as not sorting is
# platform-dep
hist = s.value_counts(sort=False).sort_values()
expected = Series([3, 1, 4, 2], index=list("acbd")).sort_values()
tm.assert_series_equal(hist, expected)
# sort ascending
hist = s.value_counts(ascending=True)
expected = Series([1, 2, 3, 4], index=list("cdab"))
tm.assert_series_equal(hist, expected)
# relative histogram.
hist = s.value_counts(normalize=True)
expected = Series([0.4, 0.3, 0.2, 0.1], index=["b", "a", "d", "c"])
tm.assert_series_equal(hist, expected)
def test_value_counts_bins(self, index_or_series):
klass = index_or_series
s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"]
s = klass(s_values)
# bins
with pytest.raises(TypeError):
s.value_counts(bins=1)
s1 = Series([1, 1, 2, 3])
res1 = s1.value_counts(bins=1)
exp1 = Series({Interval(0.997, 3.0): 4})
tm.assert_series_equal(res1, exp1)
res1n = s1.value_counts(bins=1, normalize=True)
exp1n = Series({Interval(0.997, 3.0): 1.0})
tm.assert_series_equal(res1n, exp1n)
if isinstance(s1, Index):
tm.assert_index_equal(s1.unique(), Index([1, 2, 3]))
else:
exp = np.array([1, 2, 3], dtype=np.int64)
tm.assert_numpy_array_equal(s1.unique(), exp)
assert s1.nunique() == 3
# these return the same
res4 = s1.value_counts(bins=4, dropna=True)
intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0])
exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2]))
tm.assert_series_equal(res4, exp4)
res4 = s1.value_counts(bins=4, dropna=False)
intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0])
exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2]))
tm.assert_series_equal(res4, exp4)
res4n = s1.value_counts(bins=4, normalize=True)
exp4n = Series([0.5, 0.25, 0.25, 0], index=intervals.take([0, 3, 1, 2]))
tm.assert_series_equal(res4n, exp4n)
# handle NA's properly
s_values = ["a", "b", "b", "b", np.nan, np.nan, "d", "d", "a", "a", "b"]
s = klass(s_values)
expected = Series([4, 3, 2], index=["b", "a", "d"])
tm.assert_series_equal(s.value_counts(), expected)
if isinstance(s, Index):
exp = Index(["a", "b", np.nan, "d"])
tm.assert_index_equal(s.unique(), exp)
else:
exp = np.array(["a", "b", np.nan, "d"], dtype=object)
tm.assert_numpy_array_equal(s.unique(), exp)
assert s.nunique() == 3
s = klass({}) if klass is dict else klass({}, dtype=object)
expected = Series([], dtype=np.int64)
tm.assert_series_equal(s.value_counts(), expected, check_index_type=False)
# returned dtype differs depending on original
if isinstance(s, Index):
tm.assert_index_equal(s.unique(), Index([]), exact=False)
else:
tm.assert_numpy_array_equal(s.unique(), np.array([]), check_dtype=False)
assert s.nunique() == 0
def test_value_counts_datetime64(self, index_or_series):
klass = index_or_series
# GH 3002, datetime64[ns]
# don't test names though
txt = "\n".join(
[
"xxyyzz20100101PIE",
"xxyyzz20100101GUM",
"xxyyzz20100101EGG",
"xxyyww20090101EGG",
"foofoo20080909PIE",
"foofoo20080909GUM",
]
)
f = StringIO(txt)
df = pd.read_fwf(
f, widths=[6, 8, 3], names=["person_id", "dt", "food"], parse_dates=["dt"]
)
s = klass(df["dt"].copy())
s.name = None
idx = pd.to_datetime(
["2010-01-01 00:00:00", "2008-09-09 00:00:00", "2009-01-01 00:00:00"]
)
expected_s = Series([3, 2, 1], index=idx)
tm.assert_series_equal(s.value_counts(), expected_s)
expected = np_array_datetime64_compat(
["2010-01-01 00:00:00", "2009-01-01 00:00:00", "2008-09-09 00:00:00"],
dtype="datetime64[ns]",
)
if isinstance(s, Index):
tm.assert_index_equal(s.unique(), DatetimeIndex(expected))
else:
tm.assert_numpy_array_equal(s.unique(), expected)
assert s.nunique() == 3
# with NaT
s = df["dt"].copy()
s = klass(list(s.values) + [pd.NaT])
result = s.value_counts()
assert result.index.dtype == "datetime64[ns]"
tm.assert_series_equal(result, expected_s)
result = s.value_counts(dropna=False)
expected_s[pd.NaT] = 1
tm.assert_series_equal(result, expected_s)
unique = s.unique()
assert unique.dtype == "datetime64[ns]"
# numpy_array_equal cannot compare pd.NaT
if isinstance(s, Index):
exp_idx = DatetimeIndex(expected.tolist() + [pd.NaT])
tm.assert_index_equal(unique, exp_idx)
else:
tm.assert_numpy_array_equal(unique[:3], expected)
assert pd.isna(unique[3])
assert s.nunique() == 3
assert s.nunique(dropna=False) == 4
# timedelta64[ns]
td = df.dt - df.dt + timedelta(1)
td = klass(td, name="dt")
result = td.value_counts()
expected_s = Series([6], index=[Timedelta("1day")], name="dt")
tm.assert_series_equal(result, expected_s)
expected = TimedeltaIndex(["1 days"], name="dt")
if isinstance(td, Index):
tm.assert_index_equal(td.unique(), expected)
else:
tm.assert_numpy_array_equal(td.unique(), expected.values)
td2 = timedelta(1) + (df.dt - df.dt)
td2 = klass(td2, name="dt")
result2 = td2.value_counts()
tm.assert_series_equal(result2, expected_s)
def test_factorize(self):
for orig in self.objs:
o = orig.copy()
if isinstance(o, Index) and o.is_boolean():
exp_arr = np.array([0, 1] + [0] * 8, dtype=np.intp)
exp_uniques = o
exp_uniques = Index([False, True])
else:
exp_arr = np.array(range(len(o)), dtype=np.intp)
exp_uniques = o
codes, uniques = o.factorize()
tm.assert_numpy_array_equal(codes, exp_arr)
if isinstance(o, Series):
tm.assert_index_equal(uniques, Index(orig), check_names=False)
else:
# factorize explicitly resets name
tm.assert_index_equal(uniques, exp_uniques, check_names=False)
def test_factorize_repeated(self):
for orig in self.objs:
o = orig.copy()
# don't test boolean
if isinstance(o, Index) and o.is_boolean():
continue
# sort by value, and create duplicates
if isinstance(o, Series):
o = o.sort_values()
n = o.iloc[5:].append(o)
else:
indexer = o.argsort()
o = o.take(indexer)
n = o[5:].append(o)
exp_arr = np.array(
[5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.intp
)
codes, uniques = n.factorize(sort=True)
tm.assert_numpy_array_equal(codes, exp_arr)
if isinstance(o, Series):
tm.assert_index_equal(
uniques, Index(orig).sort_values(), check_names=False
)
else:
tm.assert_index_equal(uniques, o, check_names=False)
exp_arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4], np.intp)
codes, uniques = n.factorize(sort=False)
tm.assert_numpy_array_equal(codes, exp_arr)
if isinstance(o, Series):
expected = Index(o.iloc[5:10].append(o.iloc[:5]))
tm.assert_index_equal(uniques, expected, check_names=False)
else:
expected = o[5:10].append(o[:5])
tm.assert_index_equal(uniques, expected, check_names=False)
def test_duplicated_drop_duplicates_index(self):
# GH 4060
for original in self.objs:
if isinstance(original, Index):
# special case
if original.is_boolean():
result = original.drop_duplicates()
expected = Index([False, True], name="a")
tm.assert_index_equal(result, expected)
continue
# original doesn't have duplicates
expected = np.array([False] * len(original), dtype=bool)
duplicated = original.duplicated()
tm.assert_numpy_array_equal(duplicated, expected)
assert duplicated.dtype == bool
result = original.drop_duplicates()
tm.assert_index_equal(result, original)
assert result is not original
# has_duplicates
assert not original.has_duplicates
# create repeated values, 3rd and 5th values are duplicated
idx = original[list(range(len(original))) + [5, 3]]
expected = np.array([False] * len(original) + [True, True], dtype=bool)
duplicated = idx.duplicated()
tm.assert_numpy_array_equal(duplicated, expected)
assert duplicated.dtype == bool
tm.assert_index_equal(idx.drop_duplicates(), original)
base = [False] * len(idx)
base[3] = True
base[5] = True
expected = np.array(base)
duplicated = idx.duplicated(keep="last")
tm.assert_numpy_array_equal(duplicated, expected)
assert duplicated.dtype == bool
result = idx.drop_duplicates(keep="last")
tm.assert_index_equal(result, idx[~expected])
base = [False] * len(original) + [True, True]
base[3] = True
base[5] = True
expected = np.array(base)
duplicated = idx.duplicated(keep=False)
tm.assert_numpy_array_equal(duplicated, expected)
assert duplicated.dtype == bool
result = idx.drop_duplicates(keep=False)
tm.assert_index_equal(result, idx[~expected])
with pytest.raises(
TypeError,
match=r"drop_duplicates\(\) got an unexpected keyword argument",
):
idx.drop_duplicates(inplace=True)
else:
expected = Series(
[False] * len(original), index=original.index, name="a"
)
tm.assert_series_equal(original.duplicated(), expected)
result = original.drop_duplicates()
tm.assert_series_equal(result, original)
assert result is not original
idx = original.index[list(range(len(original))) + [5, 3]]
values = original._values[list(range(len(original))) + [5, 3]]
s = Series(values, index=idx, name="a")
expected = Series(
[False] * len(original) + [True, True], index=idx, name="a"
)
tm.assert_series_equal(s.duplicated(), expected)
tm.assert_series_equal(s.drop_duplicates(), original)
base = [False] * len(idx)
base[3] = True
base[5] = True
expected = Series(base, index=idx, name="a")
tm.assert_series_equal(s.duplicated(keep="last"), expected)
tm.assert_series_equal(
s.drop_duplicates(keep="last"), s[~np.array(base)]
)
base = [False] * len(original) + [True, True]
base[3] = True
base[5] = True
expected = Series(base, index=idx, name="a")
tm.assert_series_equal(s.duplicated(keep=False), expected)
tm.assert_series_equal(
s.drop_duplicates(keep=False), s[~np.array(base)]
)
s.drop_duplicates(inplace=True)
tm.assert_series_equal(s, original)
def test_drop_duplicates_series_vs_dataframe(self):
# GH 14192
df = pd.DataFrame(
{
"a": [1, 1, 1, "one", "one"],
"b": [2, 2, np.nan, np.nan, np.nan],
"c": [3, 3, np.nan, np.nan, "three"],
"d": [1, 2, 3, 4, 4],
"e": [
datetime(2015, 1, 1),
datetime(2015, 1, 1),
datetime(2015, 2, 1),
pd.NaT,
pd.NaT,
],
}
)
for column in df.columns:
for keep in ["first", "last", False]:
dropped_frame = df[[column]].drop_duplicates(keep=keep)
dropped_series = df[column].drop_duplicates(keep=keep)
tm.assert_frame_equal(dropped_frame, dropped_series.to_frame())
def test_fillna(self):
# # GH 11343
# though Index.fillna and Series.fillna has separate impl,
# test here to confirm these works as the same
for orig in self.objs:
o = orig.copy()
values = o.values
# values will not be changed
result = o.fillna(o.astype(object).values[0])
if isinstance(o, Index):
tm.assert_index_equal(o, result)
else:
tm.assert_series_equal(o, result)
# check shallow_copied
assert o is not result
for null_obj in [np.nan, None]:
for orig in self.objs:
o = orig.copy()
klass = type(o)
if not self._allow_na_ops(o):
continue
if needs_i8_conversion(o):
values = o.astype(object).values
fill_value = values[0]
values[0:2] = pd.NaT
else:
values = o.values.copy()
fill_value = o.values[0]
values[0:2] = null_obj
expected = [fill_value] * 2 + list(values[2:])
expected = klass(expected, dtype=orig.dtype)
o = klass(values)
# check values has the same dtype as the original
assert o.dtype == orig.dtype
result = o.fillna(fill_value)
if isinstance(o, Index):
tm.assert_index_equal(result, expected)
else:
tm.assert_series_equal(result, expected)
# check shallow_copied
assert o is not result
@pytest.mark.skipif(PYPY, reason="not relevant for PyPy")
def test_memory_usage(self):
for o in self.objs:
res = o.memory_usage()
res_deep = o.memory_usage(deep=True)
if is_object_dtype(o) or (
isinstance(o, Series) and is_object_dtype(o.index)
):
# if there are objects, only deep will pick them up
assert res_deep > res
else:
assert res == res_deep
if isinstance(o, Series):
assert (
o.memory_usage(index=False) + o.index.memory_usage()
) == o.memory_usage(index=True)
# sys.getsizeof will call the .memory_usage with
# deep=True, and add on some GC overhead
diff = res_deep - sys.getsizeof(o)
assert abs(diff) < 100
def test_searchsorted(self):
# See gh-12238
for o in self.objs:
index = np.searchsorted(o, max(o))
assert 0 <= index <= len(o)
index = np.searchsorted(o, max(o), sorter=range(len(o)))
assert 0 <= index <= len(o)
def test_validate_bool_args(self):
invalid_values = [1, "True", [1, 2, 3], 5.0]
for value in invalid_values:
with pytest.raises(ValueError):
self.int_series.drop_duplicates(inplace=value)
def test_getitem(self):
for i in self.indexes:
s = pd.Series(i)
assert i[0] == s.iloc[0]
assert i[5] == s.iloc[5]
assert i[-1] == s.iloc[-1]
assert i[-1] == i[9]
with pytest.raises(IndexError):
i[20]
with pytest.raises(IndexError):
s.iloc[20]
@pytest.mark.parametrize("indexer_klass", [list, pd.Index])
@pytest.mark.parametrize(
"indexer",
[
[True] * 10,
[False] * 10,
[True, False, True, True, False, False, True, True, False, True],
],
)
def test_bool_indexing(self, indexer_klass, indexer):
# GH 22533
for idx in self.indexes:
exp_idx = [i for i in range(len(indexer)) if indexer[i]]
tm.assert_index_equal(idx[indexer_klass(indexer)], idx[exp_idx])
s = pd.Series(idx)
tm.assert_series_equal(s[indexer_klass(indexer)], s.iloc[exp_idx])
def test_get_indexer_non_unique_dtype_mismatch(self):
# GH 25459
indexes, missing = pd.Index(["A", "B"]).get_indexer_non_unique(pd.Index([0]))
tm.assert_numpy_array_equal(np.array([-1], dtype=np.intp), indexes)
tm.assert_numpy_array_equal(np.array([0], dtype=np.int64), missing)